chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一文理清CPU、GPU和TPU的關(guān)系

羅欣 ? 來源:Google Cloud ? 作者:Kaz Sato ? 2018-09-04 11:12 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

很多讀者可能分不清楚 CPU、GPU 和 TPU 之間的區(qū)別,因此 Google Cloud 將在這篇博客中簡要介紹它們之間的區(qū)別,并討論為什么 TPU 能加速深度學(xué)習(xí)

張量處理單元(TPU)是一種定制化的 ASIC 芯片,它由谷歌從頭設(shè)計,并專門用于機器學(xué)習(xí)工作負載。TPU 為谷歌的主要產(chǎn)品提供了計算支持,包括翻譯、照片、搜索助理和 Gmail 等。Cloud TPU 將 TPU 作為可擴展的云計算資源,并為所有在 Google Cloud 上運行尖端 ML 模型的開發(fā)者與數(shù)據(jù)科學(xué)家提供計算資源。在 Google Next’18 中,我們宣布 TPU v2 現(xiàn)在已經(jīng)得到用戶的廣泛使用,包括那些免費試用用戶,而 TPU v3 目前已經(jīng)發(fā)布了內(nèi)部測試版。

第三代 Cloud TPU

如上為 tpudemo.com 截圖,該網(wǎng)站 PPT 解釋了 TPU 的特性與定義。在本文中,我們將關(guān)注 TPU 某些特定的屬性。

神經(jīng)網(wǎng)絡(luò)如何運算

在我們對比 CPU、GPU 和 TPU 之前,我們可以先了解到底機器學(xué)習(xí)或神經(jīng)網(wǎng)絡(luò)需要什么樣的計算。如下所示,假設(shè)我們使用單層神經(jīng)網(wǎng)絡(luò)識別手寫數(shù)字。

如果圖像為 28×28 像素的灰度圖,那么它可以轉(zhuǎn)化為包含 784 個元素的向量。神經(jīng)元會接收所有 784 個值,并將它們與參數(shù)值(上圖紅線)相乘,因此才能識別為「8」。其中參數(shù)值的作用類似于用「濾波器」從數(shù)據(jù)中抽取特征,因而能計算輸入圖像與「8」之間的相似性:

這是對神經(jīng)網(wǎng)絡(luò)做數(shù)據(jù)分類最基礎(chǔ)的解釋,即將數(shù)據(jù)與對應(yīng)的參數(shù)相乘(上圖兩種顏色的點),并將它們加在一起(上圖右側(cè)收集計算結(jié)果)。如果我們能得到最高的預(yù)測值,那么我們會發(fā)現(xiàn)輸入數(shù)據(jù)與對應(yīng)參數(shù)非常匹配,這也就最可能是正確的答案。

簡單而言,神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)和參數(shù)之間需要執(zhí)行大量的乘法和加法。我們通常會將這些乘法與加法組合為矩陣運算,這在我們大學(xué)的線性代數(shù)中會提到。所以關(guān)鍵點是我們該如何快速執(zhí)行大型矩陣運算,同時還需要更小的能耗。

CPU 如何運行

因此 CPU 如何來執(zhí)行這樣的大型矩陣運算任務(wù)呢?一般 CPU 是基于馮諾依曼架構(gòu)的通用處理器,這意味著 CPU 與軟件和內(nèi)存的運行方式如下:

CPU 如何運行:該動圖僅展示了概念性原理,并不反映 CPU 的實際運算行為。

CPU 最大的優(yōu)勢是靈活性。通過馮諾依曼架構(gòu),我們可以為數(shù)百萬的不同應(yīng)用加載任何軟件。我們可以使用 CPU 處理文字、控制火箭引擎、執(zhí)行銀行交易或者使用神經(jīng)網(wǎng)絡(luò)分類圖像。

但是,由于 CPU 非常靈活,硬件無法一直了解下一個計算是什么,直到它讀取了軟件的下一個指令。CPU 必須在內(nèi)部將每次計算的結(jié)果保存到內(nèi)存中(也被稱為寄存器或 L1 緩存)。內(nèi)存訪問成為 CPU 架構(gòu)的不足,被稱為馮諾依曼瓶頸。雖然神經(jīng)網(wǎng)絡(luò)的大規(guī)模運算中的每一步都是完全可預(yù)測的,每一個 CPU 的算術(shù)邏輯單元(ALU,控制乘法器和加法器的組件)都只能一個接一個地執(zhí)行它們,每一次都需要訪問內(nèi)存,限制了總體吞吐量,并需要大量的能耗。

GPU 如何工作

為了獲得比 CPU 更高的吞吐量,GPU 使用一種簡單的策略:在單個處理器中使用成千上萬個 ALU。現(xiàn)代 GPU 通常在單個處理器中擁有 2500-5000 個 ALU,意味著你可以同時執(zhí)行數(shù)千次乘法和加法運算。

GPU 如何工作:這個動畫僅用于概念展示。并不反映真實處理器的實際工作方式。

這種 GPU 架構(gòu)在有大量并行化的應(yīng)用中工作得很好,例如在神經(jīng)網(wǎng)絡(luò)中的矩陣乘法。實際上,相比 CPU,GPU 在深度學(xué)習(xí)的典型訓(xùn)練工作負載中能實現(xiàn)高幾個數(shù)量級的吞吐量。這正是為什么 GPU 是深度學(xué)習(xí)中最受歡迎的處理器架構(gòu)。

但是,GPU 仍然是一種通用的處理器,必須支持幾百萬種不同的應(yīng)用和軟件。這又把我們帶回到了基礎(chǔ)的問題,馮諾依曼瓶頸。在每次幾千個 ALU 的計算中,GPU 都需要訪問寄存器或共享內(nèi)存來讀取和保存中間計算結(jié)果。因為 GPU 在其 ALU 上執(zhí)行更多的并行計算,它也會成比例地耗費更多的能量來訪問內(nèi)存,同時也因為復(fù)雜的線路而增加 GPU 的物理空間占用。

TPU 如何工作

當谷歌設(shè)計 TPU 的時候,我們構(gòu)建了一種領(lǐng)域特定的架構(gòu)。這意味著,我們沒有設(shè)計一種通用的處理器,而是專用于神經(jīng)網(wǎng)絡(luò)工作負載的矩陣處理器。TPU 不能運行文本處理軟件、控制火箭引擎或執(zhí)行銀行業(yè)務(wù),但它們可以為神經(jīng)網(wǎng)絡(luò)處理大量的乘法和加法運算,同時 TPU 的速度非??臁⒛芎姆浅P∏椅锢砜臻g占用也更小。

其主要助因是對馮諾依曼瓶頸的大幅度簡化。因為該處理器的主要任務(wù)是矩陣處理,TPU 的硬件設(shè)計者知道該運算過程的每個步驟。因此他們放置了成千上萬的乘法器和加法器并將它們直接連接起來,以構(gòu)建那些運算符的物理矩陣。這被稱作脈動陣列(Systolic Array)架構(gòu)。在 Cloud TPU v2 的例子中,有兩個 128X128 的脈動陣列,在單個處理器中集成了 32768 個 ALU 的 16 位浮點值。

我們來看看一個脈動陣列如何執(zhí)行神經(jīng)網(wǎng)絡(luò)計算。首先,TPU 從內(nèi)存加載參數(shù)到乘法器和加法器的矩陣中。

然后,TPU 從內(nèi)存加載數(shù)據(jù)。當每個乘法被執(zhí)行后,其結(jié)果將被傳遞到下一個乘法器,同時執(zhí)行加法。因此結(jié)果將是所有數(shù)據(jù)和參數(shù)乘積的和。在大量計算和數(shù)據(jù)傳遞的整個過程中,不需要執(zhí)行任何的內(nèi)存訪問。

這就是為什么 TPU 可以在神經(jīng)網(wǎng)絡(luò)運算上達到高計算吞吐量,同時能耗和物理空間都很小。

好處:成本降低至 1/5

因此使用 TPU 架構(gòu)的好處就是:降低成本。以下是截至 2018 年 8 月(寫這篇文章的時候)Cloud TPU v2 的使用價格。

Cloud TPU v2 的價格,截至 2018 年 8 月。

斯坦福大學(xué)發(fā)布了深度學(xué)習(xí)和推理的基準套裝 DAWNBench。你可以在上面找到不同的任務(wù)、模型、計算平臺以及各自的基準結(jié)果的組合。

DAWNBench:https://dawn.cs.stanford.edu/benchmark/

在 DAWNBench 比賽于 2018 年 4 月結(jié)束的時候,非 TPU 處理器的最低訓(xùn)練成本是 72.40 美元(使用現(xiàn)場實例訓(xùn)練 ResNet-50 達到 93% 準確率)。而使用 Cloud TPU v2 搶占式計價,你可以在 12.87 美元的價格完成相同的訓(xùn)練結(jié)果。這僅相當于非 TPU 的不到 1/5 的成本。這正是神經(jīng)網(wǎng)絡(luò)領(lǐng)域特定架構(gòu)的威力之所在。

本文來源:Google Cloud Kaz Sato

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    11250

    瀏覽量

    223827
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    5149

    瀏覽量

    134737
  • TPU
    TPU
    +關(guān)注

    關(guān)注

    0

    文章

    169

    瀏覽量

    21601
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    什么是TPU?萬協(xié)通帶你看懂AI算力的“變形金剛”

    當我們在感嘆ChatGPT的妙語連珠時,你是否好奇過:究竟是什么樣的“心臟”,在支撐這些超級AI沒日沒夜地思考?答案不是你熟悉的CPU,也不僅僅是顯卡GPU,而是位更專注、更硬核的“特種兵
    的頭像 發(fā)表于 01-13 13:22 ?79次閱讀
    什么是<b class='flag-5'>TPU</b>?萬協(xié)通帶你看懂AI算力的“變形金剛”

    AI芯片大單!Anthropic從博通采購100萬顆TPU v7p芯片

    電子發(fā)燒友網(wǎng)報道(/李彎彎)近日消息,AI企業(yè)Anthropic將直接從博通采購近100萬顆TPU v7?pIronwood AI芯片,本地部署在其控制的數(shù)據(jù)中心中。也就是說,博通將直接向
    的頭像 發(fā)表于 01-06 08:38 ?5918次閱讀

    AI硬件全景解析:CPU、GPU、NPU、TPU的差異化之路,看懂!?

    CPU作為“通用基石”,支撐所有設(shè)備的基礎(chǔ)運行;GPU憑借并行算力,成為AI訓(xùn)練與圖形處理的“主力”;TPU在Google生態(tài)中深耕云端大模型訓(xùn)練;NPU則讓AI從“云端”走向“身邊”(手機、手表
    的頭像 發(fā)表于 12-17 17:13 ?1216次閱讀
    AI硬件全景解析:<b class='flag-5'>CPU</b>、<b class='flag-5'>GPU</b>、NPU、<b class='flag-5'>TPU</b>的差異化之路,<b class='flag-5'>一</b><b class='flag-5'>文</b>看懂!?

    不只是SAA:文理清澳洲電氣安全認證與RCM的關(guān)系

    很多中國企業(yè)準備把電器產(chǎn)品出口到澳大利亞時,第反應(yīng)是:“要做SAA認證”。但其實,“SAA認證”并不是官方強制要求,而是個被廣泛誤用的行業(yè)俗稱。真正決定產(chǎn)品能否在澳洲合法銷售的,是RCM標志
    的頭像 發(fā)表于 11-24 09:50 ?349次閱讀
    不只是SAA:<b class='flag-5'>一</b><b class='flag-5'>文理清</b>澳洲電氣安全認證與RCM的<b class='flag-5'>關(guān)系</b>

    電能表會 “爆表” 嗎?機械 / 家用 / 快充樁場景的計量真相拆解

    文理清:為何家用電表難 “爆表”,快充樁卻會?
    的頭像 發(fā)表于 11-12 09:25 ?1621次閱讀
    電能表會 “爆表” 嗎?機械 / 家用 / 快充樁場景的計量真相拆解

    如何看懂GPU架構(gòu)?分鐘帶你了解GPU參數(shù)指標

    GPU架構(gòu)參數(shù)如CUDA核心數(shù)、顯存帶寬、TensorTFLOPS、互聯(lián)方式等,并非“冰冷的數(shù)字”,而是直接關(guān)系設(shè)備能否滿足需求、如何發(fā)揮最大價值、是否避免資源浪費等問題的核心要素。本篇文章將全面
    的頭像 發(fā)表于 10-09 09:28 ?884次閱讀
    如何看懂<b class='flag-5'>GPU</b>架構(gòu)?<b class='flag-5'>一</b>分鐘帶你了解<b class='flag-5'>GPU</b>參數(shù)指標

    CPUGPU,渲染技術(shù)如何重塑游戲、影視與設(shè)計?

    渲染技術(shù)是計算機圖形學(xué)的核心內(nèi)容之,它是將三維場景轉(zhuǎn)換為二維圖像的過程。渲染技術(shù)直在不斷演進,從最初的CPU渲染到后來的GPU渲染,性能和質(zhì)量都有了顯著提升。從
    的頭像 發(fā)表于 09-01 12:16 ?879次閱讀
    從 <b class='flag-5'>CPU</b> 到 <b class='flag-5'>GPU</b>,渲染技術(shù)如何重塑游戲、影視與設(shè)計?

    【VisionFive 2單板計算機試用體驗】1、開箱初體驗(刷系統(tǒng)+靜態(tài)IP設(shè)置+GPU跑分測評)

    。 GPU跑分 首先用clinfo命令查看GPU,當然也可以在debain-system setting-about界面看到BXE-4-32GPU benchmark軟件
    發(fā)表于 07-09 21:50

    智算加速卡是什么東西?它真能在AI戰(zhàn)場上干掉GPUTPU

    隨著AI技術(shù)火得塌糊涂,大家都在談"大模型"、"AI加速"、"智能計算",可真到了落地環(huán)節(jié),算力才是硬通貨。你有沒有發(fā)現(xiàn),現(xiàn)在越來越多的AI企業(yè)不光用GPU,也不怎么迷信TPU了?他們嘴里多了
    的頭像 發(fā)表于 06-05 13:39 ?1499次閱讀
    智算加速卡是什么東西?它真能在AI戰(zhàn)場上干掉<b class='flag-5'>GPU</b>和<b class='flag-5'>TPU</b>!

    超越CPU/GPU:NPU如何讓AI“輕裝上陣”?

    電子發(fā)燒友網(wǎng)報道(/李彎彎)NPU是種專門為人工智能(AI)計算設(shè)計的處理器,主要用于高效執(zhí)行神經(jīng)網(wǎng)絡(luò)相關(guān)的運算(如矩陣乘法、卷積、激活函數(shù)等)。相較于傳統(tǒng)CPU/GPU,NPU在
    的頭像 發(fā)表于 04-18 00:05 ?3730次閱讀

    谷歌新TPU 芯片 Ironwood:助力大規(guī)模思考與推理的 AI 模型新引擎?

    電子發(fā)燒友網(wǎng)報道( / 李彎彎)日前,谷歌在 Cloud Next 大會上,隆重推出了最新TPU AI 加速芯片 ——Ironwood。據(jù)悉,該芯片預(yù)計于今年晚些時候面向 Google
    的頭像 發(fā)表于 04-12 00:57 ?3461次閱讀

    CPUGPU:渲染技術(shù)的演進和趨勢

    渲染技術(shù)是計算機圖形學(xué)的核心內(nèi)容之,它是將三維場景轉(zhuǎn)換為二維圖像的過程。渲染技術(shù)直在不斷演進,從最初的CPU渲染到后來的GPU渲染,性能和質(zhì)量都有了顯著提升。
    的頭像 發(fā)表于 02-21 11:11 ?1577次閱讀
    從<b class='flag-5'>CPU</b>到<b class='flag-5'>GPU</b>:渲染技術(shù)的演進和趨勢

    RK3588性能設(shè)置 CPU GPU DDR NPU 頻率設(shè)置

    RK3588 CPU GPU DDR定頻策略
    的頭像 發(fā)表于 02-15 16:09 ?3005次閱讀

    GPU渲染才是大勢所趨?CPU渲染與GPU渲染的現(xiàn)狀與未來

    在3D建模和渲染領(lǐng)域,隨著技術(shù)的發(fā)展,CPU渲染和GPU渲染這兩種方法逐漸呈現(xiàn)出各自獨特的優(yōu)勢,并且在不同的應(yīng)用場景中各有側(cè)重。盡管當前我們處在CPU渲染和
    的頭像 發(fā)表于 02-06 11:04 ?1461次閱讀
    <b class='flag-5'>GPU</b>渲染才是大勢所趨?<b class='flag-5'>CPU</b>渲染與<b class='flag-5'>GPU</b>渲染的現(xiàn)狀與未來

    fpga和cpu的區(qū)別 芯片是gpu還是CPU

    、FPGA與CPU的區(qū)別 FPGA(Field-Programmable Gate Array,現(xiàn)場可編程門陣列)和CPU(Central Processing Unit,中央處理器)是兩種不同類
    的頭像 發(fā)表于 02-01 14:57 ?3477次閱讀