chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

無(wú)標(biāo)簽數(shù)據(jù)如何提升人臉識(shí)別性能

商湯科技SenseTime ? 來(lái)源:cc ? 2019-01-10 15:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

隨著模型越來(lái)越深,標(biāo)注數(shù)據(jù)越來(lái)越難增加,人臉識(shí)別可能遇到瓶頸。本文來(lái)自MMLab香港中文大學(xué)-商湯科技聯(lián)合實(shí)驗(yàn)室,提出一種有監(jiān)督的Metric用于人臉聚類(lèi),來(lái)部分解決無(wú)標(biāo)注數(shù)據(jù)內(nèi)部結(jié)構(gòu)復(fù)雜、依賴特定Metric、缺乏Outlier控制,以及時(shí)間復(fù)雜度等問(wèn)題。

人臉識(shí)別也許是最成功也最先到達(dá)瓶頸的深度學(xué)習(xí)應(yīng)用。在Go Deeper, MoreData,Higher Performance的思想指導(dǎo)下,模型更深了,數(shù)據(jù)卻越來(lái)越難增加。目前在人臉的公開(kāi)數(shù)據(jù)集標(biāo)到了百萬(wàn)級(jí)別,人臉識(shí)別百萬(wàn)里挑一的正確率達(dá)到99.9%(MegaFace Benchmark)之后,發(fā)現(xiàn)再也標(biāo)不動(dòng)了。標(biāo)注員能標(biāo)出來(lái)的數(shù)據(jù)永遠(yuǎn)是簡(jiǎn)單樣本,而人臉識(shí)別模型是個(gè)“深淵”,當(dāng)你凝視“深淵”的時(shí)候,“深淵”并不想看到你。

“深淵”想看到這樣的數(shù)據(jù),并且明確被告知不是同一個(gè)人:

以及這樣的數(shù)據(jù),并且明確被告知是同一個(gè)人:

在把標(biāo)注員弄瘋之前,不如先讓模型自己去猜一猜,說(shuō)不定就猜對(duì)了呢?這其實(shí)就是半監(jiān)督學(xué)習(xí)的思路。利用已有的模型對(duì)無(wú)標(biāo)簽數(shù)據(jù)做某種預(yù)測(cè),將預(yù)測(cè)結(jié)果用來(lái)幫助模型訓(xùn)練。這種自我增強(qiáng)(Self-Enhanced)的學(xué)習(xí)方式,雖然看起來(lái)有漂移(Drift)的風(fēng)險(xiǎn),但實(shí)際用起來(lái)還挺好用 [5]。對(duì)于閉集(Close-Set)的問(wèn)題,也就是所有數(shù)據(jù)都屬于一個(gè)已知的類(lèi)別集合(例如ImageNet, CIFAR等),只需要模型能通過(guò)各種方法,例如標(biāo)簽傳播(labelPropagation)等,預(yù)測(cè)出無(wú)標(biāo)簽數(shù)據(jù)的標(biāo)簽,再把它們加入訓(xùn)練即可。

然而問(wèn)題來(lái)了,人臉識(shí)別是一個(gè)開(kāi)集(Open-Set)的問(wèn)題。

例如,人臉比對(duì)(Verification)、人臉鑒定(Identification)等任務(wù)中,測(cè)試樣本的身份(Identity)通常沒(méi)有在訓(xùn)練樣本中出現(xiàn)過(guò),測(cè)試過(guò)程通常是提取人臉特征進(jìn)行比對(duì),而非直接通過(guò)網(wǎng)絡(luò)推理得到標(biāo)簽。同樣,對(duì)于無(wú)標(biāo)注數(shù)據(jù),在采集的過(guò)程中,人臉的身份也是未知的??赡苡袠?biāo)注的數(shù)據(jù)的人臉屬于10萬(wàn)個(gè)人,而新來(lái)的無(wú)標(biāo)注數(shù)據(jù)屬于另外10萬(wàn)個(gè)人,這樣一來(lái)就無(wú)法通過(guò)預(yù)測(cè)標(biāo)簽的方式把這些數(shù)據(jù)利用起來(lái)。而聚類(lèi)不同于半監(jiān)督學(xué)習(xí),只需要知道樣本的特征描述(Feature)和樣本之間的相似度度量標(biāo)準(zhǔn)(Metric)就可以做聚類(lèi)。聚完類(lèi)之后再給每個(gè)類(lèi)分配新的標(biāo)簽,同樣可以用來(lái)幫助提升人臉模型。

人臉聚類(lèi)方法

傳統(tǒng)的人臉聚類(lèi)一般采用LBP、HOG之類(lèi)的手動(dòng)設(shè)計(jì)的特征,因?yàn)檫@類(lèi)特征過(guò)于過(guò)時(shí),不在我們討論的范疇。而深度學(xué)習(xí)時(shí)代的人臉聚類(lèi),一般采用卷積神經(jīng)網(wǎng)絡(luò)(CNN)中提取出來(lái)的特征 [4]。人臉識(shí)別的CNN通常把人臉圖片映射(Embedding)到一個(gè)高維的向量,然后使用一個(gè)線性分類(lèi)器,加Softmax激活函數(shù)和交叉熵?fù)p失(Cross Entropy Loss)來(lái)訓(xùn)練。

紫色的向量即為人臉特征(圖片來(lái)自 [3])

這種方式?jīng)Q定了這些經(jīng)過(guò)映射(Embedding)后的人臉在特征空間里分布在不同的錐形(Cone)中(下左圖),因而可以使用余弦相似度(Cosine Similarity)來(lái)度量相似度?;蛘呷绻麑?duì)人臉特征做二范數(shù)(L2)歸一化,那么人臉特征則會(huì)分布在一個(gè)球面上(下右圖),這樣可以使用L2距離來(lái)度量。

圖示為2維,實(shí)際在高維空間(圖片來(lái)自 [6])

有了特征和度量標(biāo)準(zhǔn)之后,就可以考慮如何選擇一個(gè)聚類(lèi)算法了?,F(xiàn)成的聚類(lèi)算法包括K-Means,Spectral, DBSCAN, Hierarchical Agglomerative Clustering (HAC), Rank Order等以及它們的變種。利用這些方法聚類(lèi)之后,將每一類(lèi)中的樣本分配相同的標(biāo)簽,不同的類(lèi)分配不同的標(biāo)簽,就可以用來(lái)充當(dāng)訓(xùn)練集了。

到此為止,似乎已經(jīng)可以順利地完成這個(gè)任務(wù)了。然而

使用20萬(wàn)張圖提取特征之后來(lái)測(cè)試一下這些聚類(lèi)算法,K-Means花了10分鐘,HAC花了5.7小時(shí),DBSCAN花了6.9小時(shí), Spectral花了12小時(shí)。若使用60萬(wàn)張圖片提取的特征來(lái)做聚類(lèi),K-Means超內(nèi)存了,HAC花了61小時(shí),DBSCAN花了80小時(shí),Spectral跑到天荒地老之后也甩了一句超內(nèi)存。當(dāng)圖片數(shù)量增加到140萬(wàn)的時(shí)候,幾乎所有的聚類(lèi)算法都掛了。

K-Means, Spectral, HAC等傳統(tǒng)聚類(lèi)方法的問(wèn)題主要在于以下方面:

(a) 聚類(lèi)算法具有較高的時(shí)間復(fù)雜度。例如,K-Means是O(NKT),Spectral是O(N^3),HAC是O(N^2)。

(b) 通常認(rèn)為數(shù)據(jù)分布服從某些簡(jiǎn)單的假設(shè)。例如,K-Means假設(shè)數(shù)據(jù)類(lèi)內(nèi)具有球狀的分布 [2],并且每一類(lèi)具有相同的方差(Ariance),以及不同的類(lèi)具有相同的先驗(yàn)概率。然而對(duì)于大規(guī)模人臉聚類(lèi),無(wú)標(biāo)注數(shù)據(jù)通常來(lái)源于開(kāi)放的場(chǎng)景(in-the-wild),數(shù)據(jù)內(nèi)部的結(jié)構(gòu)比較復(fù)雜,難以一致地服從這些假設(shè)。例如,我們期望數(shù)據(jù)長(zhǎng)這樣(如下左圖):

(c) 通常使用某種特定的Metric。例如上述提及的Cosine Similarity和L2距離。同樣,對(duì)于復(fù)雜的數(shù)據(jù)結(jié)構(gòu),衡量?jī)蓚€(gè)樣本是否屬于同一類(lèi),單純靠樣本之間的局部相似度是不夠的,這個(gè)metric需要融合更多信息。

(d) 缺乏較好的離群值(Outliers)控制機(jī)制。Outliers來(lái)源于人臉識(shí)別模型對(duì)難樣本的Embedding誤差,以及觀測(cè)到的數(shù)據(jù)不完整。盡管部分聚類(lèi)算法例如DBSCAN理論上對(duì)Outliers魯棒,但從其實(shí)際表現(xiàn)來(lái)講這個(gè)問(wèn)題遠(yuǎn)沒(méi)有得到解決。

有監(jiān)督的Metric

終于可以說(shuō)說(shuō)自己的工作了。我們被ECCV2018接收的一篇論文(Consensus-Driven Propagation in Massive Unlabeled Data for FaceRecognition),簡(jiǎn)稱CDP [1],嘗試解決上述這些問(wèn)題中的一部分。我們提出了一種有監(jiān)督的Metric用于人臉聚類(lèi),來(lái)部分解決無(wú)標(biāo)注數(shù)據(jù)內(nèi)部結(jié)構(gòu)復(fù)雜、依賴特定Metric、缺乏Outlier控制的問(wèn)題,順便還解決了一下時(shí)間復(fù)雜度的問(wèn)題(CDP做到了線性復(fù)雜度),當(dāng)然性能也提升了一大截。

介紹方法之前我們先來(lái)介紹一下Affinity Graph。Graph在半監(jiān)督學(xué)習(xí)和聚類(lèi)上經(jīng)常出現(xiàn)。Affinity Graph的節(jié)點(diǎn)是數(shù)據(jù)樣本,邊代表數(shù)據(jù)之間的相似度。一種常見(jiàn)的Affinity Graph是KNN Graph,即對(duì)所有樣本搜索K近鄰之后將樣本與其近鄰連接起來(lái)得到。我們的方法CDP基于KNN Graph來(lái)構(gòu)建數(shù)據(jù)的結(jié)構(gòu)。

CDP本質(zhì)是學(xué)習(xí)一個(gè)Metric,也就是對(duì)樣本對(duì)(Pairs)進(jìn)行判斷。如下圖,CDP首先使用多個(gè)人臉識(shí)別模型構(gòu)建成一個(gè)委員會(huì)(Committee), Committee中每個(gè)成員對(duì)基礎(chǔ)模型中相連的Pairs提供包括關(guān)系(是否是Neighbor)、相似度、局部結(jié)構(gòu)等信息,然后使用一個(gè)多層感知機(jī)(MLP)來(lái)整合這些信息并作出預(yù)測(cè)(即這個(gè)Pair是否是同一個(gè)人)。

這個(gè)過(guò)程可以類(lèi)比成一個(gè)投票的過(guò)程,Committee負(fù)責(zé)考察一個(gè)候選人(Pair)的各方面信息,將信息匯總給MLP進(jìn)行決定。最后將所有的Positive Pairs組成一個(gè)新的Graph稱為Consensus-driven Graph。在此Graph上使用簡(jiǎn)單的連通域搜索并動(dòng)態(tài)剪枝即可快速得到聚類(lèi)。由于MLP需要使用一部分有標(biāo)簽的數(shù)據(jù)來(lái)訓(xùn)練得到,所以CDP是一種基于有監(jiān)督的Metric的聚類(lèi)方法。

CDP框架

接下來(lái)就是激fei動(dòng)chang人wu心liao的結(jié)果分析了。

在復(fù)雜度上,CDP由于只需要探索局部結(jié)構(gòu),因此除了KNN搜索之外,聚類(lèi)部分的復(fù)雜度是接近線性的。在20萬(wàn)數(shù)據(jù)上,不計(jì)入KNN搜索(依賴別的庫(kù))的時(shí)間的話,CDP單模型的耗時(shí)是7.7秒,多模型的耗時(shí)是100秒。在140萬(wàn)數(shù)據(jù)上,CDP單模型的耗時(shí)是48秒,多模型的耗時(shí)是585秒。試驗(yàn)結(jié)果上看時(shí)間復(fù)雜度甚至低于線性(小于7倍)。

在聚類(lèi)結(jié)果上,例如對(duì)20萬(wàn)數(shù)據(jù)聚類(lèi),即使使用單模型也達(dá)到了89%的fsCore,多模型可以達(dá)到95.8%,強(qiáng)于大部分傳統(tǒng)聚類(lèi)算法。各種聚類(lèi)算法運(yùn)行時(shí)間和性能測(cè)試見(jiàn)GitHub。

我們的實(shí)驗(yàn)中使用CDP聚類(lèi)后的數(shù)據(jù)加入人臉識(shí)別模型的訓(xùn)練之后,可以讓模型達(dá)到接近全監(jiān)督(使用Ground Truth標(biāo)簽)的結(jié)果。如下圖所示:

在兩個(gè)測(cè)試集(Benchmark)上,隨著數(shù)據(jù)的增多,用CDP聚類(lèi)結(jié)果訓(xùn)練的人臉模型性能的增長(zhǎng)接近全監(jiān)督模型(所有數(shù)據(jù)都使用Groundtruth標(biāo)注)。有趣的是在IJB-A上我們的結(jié)果超過(guò)了全監(jiān)督模型,原因可能是訓(xùn)練集的Ground Truth標(biāo)簽會(huì)有一些噪聲(Noise),例如誤標(biāo)注,導(dǎo)致全監(jiān)督模型在IJB-A的某些測(cè)試樣例上表現(xiàn)不佳。

下圖是切換不同的CNN模型結(jié)構(gòu)后的結(jié)果:

聚類(lèi)后的部分結(jié)果如下圖所示:

每一組代表聚完類(lèi)后屬于同一類(lèi)

我們發(fā)現(xiàn)CDP還可以用來(lái)做數(shù)據(jù)和標(biāo)簽清理(Denoise)。例如一個(gè)標(biāo)注好的數(shù)據(jù)集可能有一些標(biāo)錯(cuò)的樣本,或者非常低質(zhì)量的圖片,可以使用CDP來(lái)找到這些圖并舍棄。如下圖:

每一組人臉在原始標(biāo)注中屬于同一個(gè)人,左上角數(shù)字是CDP分配的標(biāo)簽,紅框中的樣本為CDP丟棄的樣本,包括:1. 被錯(cuò)誤標(biāo)注進(jìn)該類(lèi),實(shí)際是一個(gè)孤立點(diǎn)的樣本。2. 低質(zhì)量圖片,包括過(guò)度模糊、卡通等。

在這篇工作中我們發(fā)現(xiàn),基于學(xué)習(xí)的Metric能基于更多的有效信息進(jìn)行判斷,會(huì)比手動(dòng)設(shè)計(jì)的Metric更擅長(zhǎng)解決比較復(fù)雜的數(shù)據(jù)分布。另外,這種類(lèi)似多模型的投票的方式在魯棒性上帶來(lái)了很大提升,這樣可以從無(wú)標(biāo)簽數(shù)據(jù)中發(fā)掘出更多的難樣本。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人臉識(shí)別
    +關(guān)注

    關(guān)注

    77

    文章

    4126

    瀏覽量

    88244
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    355

    瀏覽量

    23322

原文標(biāo)題:人臉聚類(lèi)那些事兒:利用無(wú)標(biāo)簽數(shù)據(jù)提升人臉識(shí)別性能

文章出處:【微信號(hào):SenseTime2017,微信公眾號(hào):商湯科技SenseTime】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何挑選人臉識(shí)別終端?人臉識(shí)別一體機(jī)品牌排行榜

    挑選人臉識(shí)別終端時(shí)需要注意穩(wěn)定性、人臉識(shí)別算法可靠性、兼容性、安全性、軟件管理、維護(hù)與安裝以及產(chǎn)品外觀與價(jià)格等多個(gè)因素。另外,在挑選人臉
    的頭像 發(fā)表于 08-18 10:44 ?1902次閱讀
    如何挑選<b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b>終端?<b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b>一體機(jī)品牌排行榜

    人臉方向識(shí)別算法

    人臉識(shí)別
    深蕾半導(dǎo)體
    發(fā)布于 :2025年07月22日 09:58:29

    【EASY EAI Orin Nano開(kāi)發(fā)板試用體驗(yàn)】人臉識(shí)別提升

    人臉識(shí)別,可以通過(guò)兩張圖片進(jìn)行對(duì)比,來(lái)實(shí)現(xiàn)人臉識(shí)別功能。這一篇,我將分享如何將提取出來(lái)的人臉特征進(jìn)行保存,一來(lái)以
    發(fā)表于 07-05 15:21

    無(wú)人臉識(shí)別讓會(huì)議簽到效率翻倍

    隱患。如何讓簽到環(huán)節(jié)既高效無(wú)感,又能精準(zhǔn)管控?四維互聯(lián)旗下品牌“四維慧眼無(wú)人臉識(shí)別攝像機(jī)”,正在為智慧會(huì)議室?guī)?lái)一場(chǎng)“無(wú)接觸式效率革命”。
    的頭像 發(fā)表于 07-04 16:42 ?628次閱讀

    基于LockAI視覺(jué)識(shí)別模塊:C++人臉識(shí)別

    是實(shí)現(xiàn)人臉識(shí)別的常用方法: 深度學(xué)習(xí)方法:現(xiàn)代的人臉識(shí)別系統(tǒng)大多采用深度學(xué)習(xí)方法,并結(jié)合大規(guī)模人臉數(shù)據(jù)
    發(fā)表于 07-01 12:01

    基于LockAI視覺(jué)識(shí)別模塊:C++人臉識(shí)別

    本文基于RV1106做成的LockAI視覺(jué)識(shí)別模塊,采用LZ-Picodet模型訓(xùn)練的人臉檢測(cè)模型LZ-Face,以及ArcFace人臉識(shí)別模型,實(shí)現(xiàn)
    的頭像 發(fā)表于 07-01 10:09 ?715次閱讀
    基于LockAI視覺(jué)<b class='flag-5'>識(shí)別</b>模塊:C++<b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b>

    房東必備神器:人臉識(shí)別門(mén)禁系統(tǒng)提升出租屋管理效率

    識(shí)別門(mén)禁終端、人臉識(shí)別門(mén)禁一體機(jī)、視頻門(mén)禁等智能設(shè)備,提升出租屋的管理水平和效率。那么,日租房、出租屋安裝視頻門(mén)禁終端有什么好處?首先,出租屋人臉
    的頭像 發(fā)表于 06-17 10:22 ?577次閱讀
    房東必備神器:<b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b>門(mén)禁系統(tǒng)<b class='flag-5'>提升</b>出租屋管理效率

    人臉識(shí)別解決方案:智能安防與高效管理的創(chuàng)新之選

    隨著人工智能與物聯(lián)網(wǎng)技術(shù)的飛速發(fā)展,人臉識(shí)別技術(shù)已從實(shí)驗(yàn)室走向?qū)嶋H應(yīng)用場(chǎng)景,成為各行業(yè)提升安全防護(hù)、優(yōu)化服務(wù)體驗(yàn)的核心工具。大規(guī)模分布式人臉數(shù)據(jù)
    的頭像 發(fā)表于 05-13 15:43 ?1187次閱讀
    <b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b>解決方案:智能安防與高效管理的創(chuàng)新之選

    CLRC663如何增強(qiáng)對(duì)RFID標(biāo)簽ic的識(shí)別距離?

    我現(xiàn)在在使用clrc663通過(guò)ISO15693協(xié)議識(shí)別rifd標(biāo)簽 ic無(wú)線圈(尺寸5*5mm),我現(xiàn)在的方案識(shí)別距離很短接近0時(shí)才能識(shí)別,我這邊需要將
    發(fā)表于 03-17 07:50

    安信可AI人臉識(shí)別方案

    作為神仙世界的高科技,"無(wú)接觸式開(kāi)鎖",人臉識(shí)別技術(shù)也被廣泛應(yīng)用在現(xiàn)代生活中,安信可也有AI人臉識(shí)別方案!
    的頭像 發(fā)表于 02-25 14:39 ?870次閱讀
    安信可AI<b class='flag-5'>人臉</b><b class='flag-5'>識(shí)別</b>方案

    人臉識(shí)別技術(shù)的算法原理解析

    在數(shù)字化時(shí)代,人臉識(shí)別技術(shù)已經(jīng)成為身份驗(yàn)證和安全監(jiān)控的重要手段。這項(xiàng)技術(shù)的核心在于算法,它們能夠從圖像中提取關(guān)鍵信息,并與數(shù)據(jù)庫(kù)中的信息進(jìn)行匹配,以識(shí)別個(gè)體。 1.
    的頭像 發(fā)表于 02-06 17:50 ?3365次閱讀

    人臉識(shí)別技術(shù)的應(yīng)用場(chǎng)景

    在數(shù)字化時(shí)代,安全和便捷性成為了人們?nèi)找骊P(guān)注的話題。人臉識(shí)別技術(shù)以其獨(dú)特的優(yōu)勢(shì),即無(wú)需物理接觸、快速識(shí)別和高準(zhǔn)確率,成為了解決這些問(wèn)題的關(guān)鍵技術(shù)之一。 1. 安全監(jiān)控 1.1 公共安全 在公共安全
    的頭像 發(fā)表于 02-06 17:20 ?4249次閱讀