chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

探索了神經(jīng)科學(xué)技術(shù)的相關(guān)應(yīng)用,以確定人工神經(jīng)網(wǎng)絡(luò)中信息是如何結(jié)構(gòu)化的

電子工程師 ? 來(lái)源:lq ? 2019-01-15 16:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

當(dāng)談及人工神經(jīng)網(wǎng)絡(luò),黑箱問(wèn)題總會(huì)引起熱議,人們對(duì)黑箱問(wèn)題的評(píng)價(jià)褒貶不一。

有人認(rèn)為黑盒是神經(jīng)網(wǎng)絡(luò)的優(yōu)勢(shì),這代表神經(jīng)網(wǎng)絡(luò)的自主學(xué)習(xí)性,代表其自動(dòng)學(xué)習(xí)以及自動(dòng)完善的特性。但大部分人認(rèn)為,黑箱問(wèn)題需要被解決,當(dāng)我們將神經(jīng)網(wǎng)絡(luò)應(yīng)用到一些對(duì)安全性,穩(wěn)定性要求很高的行業(yè),如醫(yī)療,我們就必須進(jìn)行精準(zhǔn)控制,出現(xiàn)錯(cuò)誤或問(wèn)題時(shí),我們要對(duì)內(nèi)部結(jié)構(gòu)進(jìn)行分析改正,這時(shí)黑箱問(wèn)題就希望得到解決。

圖|Lillian, Meyes & Meisen

來(lái)自 RWTH Aachen(亞琛工業(yè)大學(xué))機(jī)械工程學(xué)院下信息管理研究所的研究人員們?cè)诮鉀Q黑箱問(wèn)題上提出了自己的見(jiàn)解,他們探索了神經(jīng)科學(xué)技術(shù)的相關(guān)應(yīng)用,以確定人工神經(jīng)網(wǎng)絡(luò)中信息是如何結(jié)構(gòu)化的。

在他們發(fā)表在 arXiv 上的論文中,研究者在人工神經(jīng)網(wǎng)絡(luò)中使用了名為“消融”(ablation)的技術(shù),原本是應(yīng)用于神經(jīng)科學(xué)的一種技術(shù),即在神經(jīng)網(wǎng)絡(luò)中切除大腦的某些神經(jīng)元來(lái)確定它們的功能。。

“我們的想法源自于神經(jīng)科學(xué)領(lǐng)域的研究,該領(lǐng)域的主要目標(biāo)是理解我們的大腦是如何工作的。”Richard Meyes 和 Tobias Meisen 兩位研究者說(shuō)道?!霸S多關(guān)于大腦功能的見(jiàn)解看法都是通過(guò)消融研究獲得的,本質(zhì)上來(lái)說(shuō),消融即選擇性地切除或破壞大腦特定區(qū)域的組織,以可控的方式進(jìn)行消融,檢測(cè)大腦該部分對(duì)諸如言語(yǔ)生成、運(yùn)動(dòng)等日常工作的影響?!?/p>

在此之前,消融已經(jīng)被應(yīng)用在一些人工神經(jīng)網(wǎng)絡(luò)的研究中,但這些研究主要關(guān)注于調(diào)整神經(jīng)網(wǎng)絡(luò)層和改變其結(jié)構(gòu),因此更像是參數(shù)搜索而不是生物學(xué)的消融法。

Mayes Meisen 以及他們的同事 Peter Lillian 進(jìn)行這項(xiàng)實(shí)驗(yàn)的目的是想從生物學(xué)的角度檢驗(yàn)人工神經(jīng)網(wǎng)絡(luò),評(píng)估它們的結(jié)構(gòu)以及不同組成部分的不同功能。最后,他們決定用消融來(lái)做這個(gè)測(cè)試,這種技術(shù)在神經(jīng)科學(xué)研究中使用了 200 多年。

在 Mayes Meisen 和他同事的研究中,研究人員希望以破壞神經(jīng)網(wǎng)絡(luò)的特定區(qū)域的方法,觀察該區(qū)域如何影響性能。最終,通過(guò)這些觀測(cè)結(jié)果對(duì)人工神經(jīng)網(wǎng)絡(luò)和生物神經(jīng)網(wǎng)絡(luò)的組織形式進(jìn)行比較。

“在人工神經(jīng)網(wǎng)絡(luò)上應(yīng)用消融的方法十分簡(jiǎn)單的,”Meyes 和 Meisen 解釋道。“首先,我們訓(xùn)練神經(jīng)網(wǎng)絡(luò)來(lái)完成特定的任務(wù),比如說(shuō)識(shí)別手寫數(shù)字。第二步,我們切除網(wǎng)絡(luò)的某一部分,然后評(píng)估由這種破壞導(dǎo)致的性能變化。第三步,我們確定網(wǎng)絡(luò)性能的改變和被破壞的位置之間是否有聯(lián)系。通過(guò)這種方法,我們發(fā)現(xiàn)網(wǎng)絡(luò)的某些特定能力,比如控制機(jī)器人執(zhí)行前進(jìn)動(dòng)作,是通過(guò)局部網(wǎng)絡(luò)控制的?!?/p>

圖| 當(dāng)每個(gè)部分被切除后,切除該部分后的輸出結(jié)果會(huì)被保存下來(lái)。(圖片來(lái)源:論文)

通過(guò)對(duì)訓(xùn)練用于在線圈中導(dǎo)航的人工神經(jīng)網(wǎng)絡(luò)進(jìn)行消融操作,并檢查這種干預(yù)措施對(duì)輸出產(chǎn)生的影響,研究者獲得了一系列有趣的發(fā)現(xiàn)——結(jié)果顯示人工神經(jīng)網(wǎng)絡(luò)和生物的神經(jīng)網(wǎng)絡(luò)之間的確存在聯(lián)系和相似之處。這些相似之處與網(wǎng)絡(luò)如何自我安排和存儲(chǔ)信息有關(guān)。

Meyes 和 Meisen 說(shuō)道:“最令我們感興趣的發(fā)現(xiàn)是,一般來(lái)說(shuō)被損壞的神經(jīng)網(wǎng)絡(luò)性能會(huì)下降,但網(wǎng)絡(luò)的某些特定能力,比如識(shí)別數(shù)字,其中部分被損壞反而會(huì)增強(qiáng)識(shí)別能力。我們的研究表明,我們可以通過(guò)消融正確區(qū)域用以增加一個(gè)神經(jīng)網(wǎng)絡(luò)的性能。此外,研究還表明,神經(jīng)科學(xué)研究得方法在人工神經(jīng)網(wǎng)絡(luò)研究上的應(yīng)用,或許可以為理解人工智能開(kāi)辟新的視角?!?/p>

盡管 Meyes, Meisen 和 Lillian 得到了喜人的結(jié)果,但他們的研究也存在一定的局限性。比如說(shuō),他們的研究受限于使用強(qiáng)化學(xué)習(xí),依賴于實(shí)時(shí)的機(jī)器人訓(xùn)練模型,這僅僅只是檢驗(yàn)生物神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的第一步。

未來(lái)的研究工作或許可以更詳細(xì)、更大規(guī)模地研究人工神經(jīng)網(wǎng)絡(luò)與大腦神經(jīng)網(wǎng)絡(luò)之間的聯(lián)系。

“我們計(jì)劃繼續(xù)探索通過(guò)利用神經(jīng)科學(xué)來(lái)啟發(fā)人工神經(jīng)網(wǎng)絡(luò)研究的研究方向,”Meyes 和 Meisen 說(shuō)道?!拔覀兘酉聛?lái)的計(jì)劃是將人工神經(jīng)網(wǎng)絡(luò)中的活動(dòng)可視化,就像大腦的活動(dòng)可以用例如 fMRI 的成像方法可視化一樣。目標(biāo)是使神經(jīng)網(wǎng)絡(luò)的決策過(guò)程更加透明,從而獲得對(duì)人工神經(jīng)網(wǎng)絡(luò)進(jìn)行更全面的了解?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:對(duì)人工神經(jīng)網(wǎng)絡(luò)“開(kāi)刀”,利用神經(jīng)科學(xué)消融法檢測(cè)人工神經(jīng)網(wǎng)絡(luò)

文章出處:【微信號(hào):deeptechchina,微信公眾號(hào):deeptechchina】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    神經(jīng)網(wǎng)絡(luò)的初步認(rèn)識(shí)

    日常生活中的智能應(yīng)用都離不開(kāi)深度學(xué)習(xí),而深度學(xué)習(xí)則依賴于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)。什么是神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)的核心思想是模仿生物神經(jīng)系統(tǒng)的結(jié)構(gòu),特別是大
    的頭像 發(fā)表于 12-17 15:05 ?78次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的初步認(rèn)識(shí)

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    , batch_size=512, epochs=20)總結(jié) 這個(gè)核心算法中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過(guò)程,是用來(lái)對(duì)MNIST手寫數(shù)字圖像進(jìn)行分類的。模型將圖像作為輸入,通過(guò)卷積和池層提取圖像的特征,然后通過(guò)全連接層進(jìn)行分類預(yù)測(cè)。訓(xùn)練過(guò)程中,模型通過(guò)最小
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來(lái)需要使用擴(kuò)展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對(duì)第一層卷積+池的部署進(jìn)行說(shuō)明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重?cái)?shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對(duì)于權(quán)重
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡(jiǎn)介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲(chóng)的神經(jīng)
    的頭像 發(fā)表于 09-28 10:03 ?758次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+神經(jīng)形態(tài)計(jì)算、類腦芯片

    功耗和并行處理信息能力。 類腦芯片的理論基礎(chǔ)是神經(jīng)形態(tài)計(jì)算,即借鑒生物神經(jīng)系統(tǒng)信息的處理模式和結(jié)構(gòu),
    發(fā)表于 09-17 16:43

    神經(jīng)網(wǎng)絡(luò)的并行計(jì)算與加速技術(shù)

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和廣泛的應(yīng)用前景。然而,神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度和規(guī)模也在不斷增加,這使得傳統(tǒng)的串行計(jì)算方式面臨著巨大的挑戰(zhàn),如計(jì)算速度慢、訓(xùn)練時(shí)間長(zhǎng)等
    的頭像 發(fā)表于 09-17 13:31 ?917次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計(jì)算與加速<b class='flag-5'>技術(shù)</b>

    無(wú)刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    摘要:論文通過(guò)對(duì)無(wú)刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)轉(zhuǎn)角預(yù)測(cè),并采用改進(jìn)遺傳算法來(lái)訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則主要基于以下幾個(gè)方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號(hào),不
    的頭像 發(fā)表于 02-12 16:41 ?1292次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1393次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)步驟詳解

    BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)步驟主要包括以下幾個(gè)階段:網(wǎng)絡(luò)初始、前向傳播、誤差計(jì)算、反向傳播和權(quán)重更新。以下是對(duì)這些步驟的詳細(xì)解釋: 一、網(wǎng)絡(luò)初始
    的頭像 發(fā)表于 02-12 15:50 ?1171次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過(guò)訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類、回歸等任務(wù),無(wú)需人工進(jìn)行復(fù)雜的特征工程。 泛能力強(qiáng) : BP
    的頭像 發(fā)表于 02-12 15:36 ?1656次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過(guò)逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小
    的頭像 發(fā)表于 02-12 15:15 ?1402次閱讀

    深度學(xué)習(xí)入門:簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    / (1 + np.exp(-x)) ? 定義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù)初始: 收起 python ? # 輸入層節(jié)點(diǎn)數(shù)input_size = 2# 隱藏層節(jié)點(diǎn)數(shù)hidden_size = 3# 輸出層節(jié)點(diǎn)數(shù)output
    的頭像 發(fā)表于 01-23 13:52 ?870次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01
    的頭像 發(fā)表于 01-09 10:24 ?2315次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法