chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

最新tf.keras指南,TensorFlow官方出品

DPVg_AI_era ? 來(lái)源:lp ? 2019-03-29 11:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

tf.keras是TensorFlow 2.0最主要的高階API接口,為TensorFlow的代碼提供了新的風(fēng)格和設(shè)計(jì)模式,大大提升了TF代碼的簡(jiǎn)潔性和復(fù)用性,也間接地提供了TF開發(fā)的規(guī)范。本文介紹了TensorFlow官網(wǎng)提供的最新的tf.keras指南。

TensorFlow 1.x以靜態(tài)圖為主,網(wǎng)上主流的TF代碼編寫主要是面向過(guò)程的(函數(shù)為主),在引入tf.keras之后,TensorFlow官方就開始推薦tf.keras里各種面向?qū)ο蟮?a href="http://www.brongaenegriffin.com/v/tag/1315/" target="_blank">編程風(fēng)格,從層到模型都是類和對(duì)象,大大簡(jiǎn)化了代碼的簡(jiǎn)潔性和復(fù)用性,也間接地提供了TF開發(fā)的規(guī)范。

Keras作者Fran?ois Chollet在Twitter轉(zhuǎn)發(fā)了TensorFlow官方最新tf.keras指南,本文大概介紹一下該指南中比較重要的內(nèi)容。

本指南的內(nèi)容大致如下:

Keras Functional API

訓(xùn)練和評(píng)價(jià)

利用繼承構(gòu)建層和模型

保存和序列化模型

Keras Functional API

指南地址:

https://www.tensorflow.org/alpha/guide/keras/functional

內(nèi)容概要:

Keras中網(wǎng)絡(luò)層的定義和調(diào)用,例如如何用指定的參數(shù)來(lái)定義一個(gè)全連接層,然后用定義的層來(lái)變換輸入數(shù)據(jù)。

Keras模型的定義和調(diào)用,包括模型自帶的訓(xùn)練和評(píng)價(jià)函數(shù)。

Keras層測(cè)復(fù)用

網(wǎng)絡(luò)中間層信息的提取和復(fù)用

自定義Keras層

Functional API的優(yōu)點(diǎn)和缺點(diǎn)

Functional API和Subclassing API(繼承式)混寫

另外,用內(nèi)置的函數(shù)可以直接可視化網(wǎng)絡(luò)結(jié)構(gòu)了:

訓(xùn)練和評(píng)價(jià)

指南地址:

https://www.tensorflow.org/alpha/guide/keras/training_and_evaluation

內(nèi)容概要:

Keras模型內(nèi)置的訓(xùn)練和評(píng)價(jià)Loop

自定義損失函數(shù)

用tf.data.Datasets作為輸入

其它輸入格式,如Pandas

采樣和類別權(quán)重

多輸入和多輸出

回調(diào)函數(shù)

斷點(diǎn)

學(xué)習(xí)率規(guī)劃

用TensorBoard可視化損失

利用繼承構(gòu)建層和模型

指南地址:

https://www.tensorflow.org/alpha/guide/keras/custom_layers_and_models

內(nèi)容概要:

Keras層封裝狀態(tài)(權(quán)重)和計(jì)算

權(quán)重延遲構(gòu)造(延遲到輸入形狀已知時(shí))

遞歸構(gòu)造Keras層

Keras層在前向傳播時(shí)遞歸收集損失

可選啟用序列化Keras層

call方法中的training參數(shù)

端到端地構(gòu)建一個(gè)模型

保存和序列化模型

指南地址:

https://www.tensorflow.org/alpha/guide/keras/saving_and_serializing

內(nèi)容概要:

保存整個(gè)模型

導(dǎo)出到SavedModel

僅保存結(jié)構(gòu)

僅保存權(quán)重

在SavedModel格式下僅保存權(quán)重

保存繼承的模型

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3687

    瀏覽量

    51942
  • 代碼
    +關(guān)注

    關(guān)注

    30

    文章

    4955

    瀏覽量

    73490
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    334

    瀏覽量

    61943

原文標(biāo)題:TensorFlow官方最新tf.keras指南:面向?qū)ο髽?gòu)建深度網(wǎng)絡(luò)

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    TF卡燒錄異常該如何處理?

    在燒錄固件到TF卡時(shí),您可能會(huì)遇到一些問(wèn)題,例如標(biāo)準(zhǔn)固件無(wú)法燒錄成功,或者某些TF卡可以正常燒錄,而其他卡則不行。為了解決這些問(wèn)題,我們建議您執(zhí)行以下兩個(gè)操作:1.TF卡硬件讀寫檢測(cè)從
    的頭像 發(fā)表于 01-08 11:51 ?89次閱讀
    <b class='flag-5'>TF</b>卡燒錄異常該如何處理?

    【上海晶珩睿莓1開發(fā)板試用體驗(yàn)】TensorFlow-Lite物體歸類(classify)

    目前尚未得知睿莓1開發(fā)板上面有NPU或者DPU之類的額外處理器,因此使用樹莓派系列使用最廣泛的TensorFlow-Lite庫(kù)進(jìn)行物體歸類,使用CPU運(yùn)行代碼,因此占用的是CPU的算力。在
    發(fā)表于 09-12 22:43

    無(wú)法將Tensorflow Lite模型轉(zhuǎn)換為OpenVINO?格式怎么處理?

    Tensorflow Lite 模型轉(zhuǎn)換為 OpenVINO? 格式。 遇到的錯(cuò)誤: FrontEnd API failed with OpConversionFailure:No translator found for TFLite_Detection_PostProcess node.
    發(fā)表于 06-25 08:27

    產(chǎn)品使用 | 龍芯2K0300 TF卡啟動(dòng)與系統(tǒng)更新指南

    前言:龍芯2K0300蜂鳥開發(fā)板支持通過(guò)TF卡啟動(dòng)系統(tǒng)。相較于EMMC存儲(chǔ)方案,TF卡具備靈活拆卸、便于鏡像修改、不受存儲(chǔ)容量限制等優(yōu)勢(shì)。本指南詳細(xì)說(shuō)明在Windows/Linux系統(tǒng)下制作T
    的頭像 發(fā)表于 05-23 08:32 ?898次閱讀
    產(chǎn)品使用 | 龍芯2K0300 <b class='flag-5'>TF</b>卡啟動(dòng)與系統(tǒng)更新<b class='flag-5'>指南</b>

    STM32F10xxx硬件開發(fā)指南

    官方STM32F10xxx硬件開發(fā)指南
    發(fā)表于 04-14 14:59 ?3次下載

    用樹莓派搞深度學(xué)習(xí)?TensorFlow啟動(dòng)!

    介紹本頁(yè)面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlow。TensorFlow是一個(gè)專為深度學(xué)習(xí)開發(fā)的大型軟件庫(kù),它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?1075次閱讀
    用樹莓派搞深度學(xué)習(xí)?<b class='flag-5'>TensorFlow</b>啟動(dòng)!

    [上手體驗(yàn)]雷龍SD NAND:比TF卡更小更耐用

    和SPI FLASH以及 NAND FLASH,基本沒(méi)聽說(shuō)過(guò)SD NAND。查閱了雷龍官方介紹),得知SD NAND俗稱貼片式TF卡,雖然SD NAND 和TF卡稱呼上有些類似,但它是為內(nèi)置存儲(chǔ)而生
    發(fā)表于 03-08 14:28

    使用OpenVINO? 2020.4.582將自定義TensorFlow 2模型轉(zhuǎn)換為中間表示 (IR)收到錯(cuò)誤怎么解決?

    轉(zhuǎn)換自定義 TensorFlow 2 模型 mask_rcnn_inception_resnet_v2_1024x1024_coco17 要 IR 使用模型優(yōu)化器命令: 注意上面的鏈接可能無(wú)法
    發(fā)表于 03-07 07:28

    將YOLOv4模型轉(zhuǎn)換為IR的說(shuō)明,無(wú)法將模型轉(zhuǎn)換為TensorFlow2格式怎么解決?

    遵照 將 YOLOv4 模型轉(zhuǎn)換為 IR 的 說(shuō)明,但無(wú)法將模型轉(zhuǎn)換為 TensorFlow2* 格式。 將 YOLOv4 darknet 轉(zhuǎn)換為 Keras 模型時(shí),收到 TypeError: buffer is too small for requested arr
    發(fā)表于 03-07 07:14

    如何將Keras H5模型轉(zhuǎn)換為中間表示 (IR) 格式?

    install_prerequisites_tf2.bat 使用 TensorFlow* 2 加載模型,并以 保存的型號(hào)格式對(duì)其進(jìn)行串行。 import tensorflow as tf
    發(fā)表于 03-07 06:11

    無(wú)法轉(zhuǎn)換TF OD API掩碼RPGA模型怎么辦?

    無(wú)法轉(zhuǎn)換重新訓(xùn)練的 TF OD API 掩碼 RPGA 模型,該模型使用以下命令在 GPU 上工作: mo > --saved_model_dir
    發(fā)表于 03-06 06:44

    為什么無(wú)法使用OpenVINO?模型優(yōu)化器轉(zhuǎn)換TensorFlow 2.4模型?

    :python3 mo_tf.py --saved_model_dir /ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/saved_model
    發(fā)表于 03-05 09:07

    OpenVINO?是否與TensorFlow集成支持Raspberry Pi?

    無(wú)法確定OpenVINO?是否與 TensorFlow* 集成支持 Raspberry Pi。
    發(fā)表于 03-05 08:26

    與OpenVINO?推斷時(shí)遇到“Runtimeeror: Can Can Constant Fold Eltwise節(jié)點(diǎn)”錯(cuò)誤怎么解決?

    使用模型優(yōu)化器將自定義 Keras 模型轉(zhuǎn)換為中間表示 (IR): mo --use_new_frontend --framework tf --input_shape
    發(fā)表于 03-05 07:53

    轉(zhuǎn)換Keras H5模型,為什么無(wú)法確定--input_shape參數(shù)的值?

    使用以下命令轉(zhuǎn)換 Keras H5 模型: mo --saved_model_dir model/ 遇到以下錯(cuò)誤: [ ERROR ] Shape [-1 30 30 3
    發(fā)表于 03-05 07:51