chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

1024塊TPU在燃燒!將BERT預(yù)訓(xùn)練模型的訓(xùn)練時長從3天縮減到了76分鐘

電子工程師 ? 來源:lp ? 2019-04-04 16:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

“Jeff Dean稱贊,TensorFlow官方推特支持,BERT目前工業(yè)界最耗時的應(yīng)用,計(jì)算量遠(yuǎn)高于ImageNet。我們將BERT的訓(xùn)練時間從三天縮短到了一小時多。”UC Berkeley大學(xué)在讀博士尤洋如是說道。

近日,來自Google、UC Berkeley、UCLA研究團(tuán)隊(duì)再度合作,成功燃燒1024塊TPU,將BERT預(yù)訓(xùn)練模型的訓(xùn)練時長從3天縮減到了76分鐘。batch size技術(shù)是加速神經(jīng)網(wǎng)絡(luò)訓(xùn)練的關(guān)鍵,在“Reducing BERT Pre-Training Time from 3 Days to 76 Minutes”這篇論文中,作者提出了LAMB優(yōu)化器,它支持自適應(yīng)元素更新和分層校正。

論文傳送門:https://arxiv.org/pdf/1904.00962.pdf

論文摘要:batch size增加到很大時的模型訓(xùn)練是加速大型分布式系統(tǒng)中深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練的關(guān)鍵。但是,這種模型訓(xùn)練很難,因?yàn)樗鼤?dǎo)致一種泛化差距。直接優(yōu)化通常會導(dǎo)致測試集上的準(zhǔn)確性下降。

BERT是一種先進(jìn)的深度學(xué)習(xí)模型,它建立在語義理解的深度雙向轉(zhuǎn)換器上。當(dāng)我們增加batch size的大小(如超過8192)時,此前的模型訓(xùn)練技巧在BERT上表現(xiàn)得并不好。BERT預(yù)訓(xùn)練也需要很長時間才能完成,如在16個TPUv3上大約需要三天。

為了解決這個問題,我們提出了LAMB優(yōu)化器,可將batch size擴(kuò)展到65536,且不會降低準(zhǔn)確率。LAMB是一個通用優(yōu)化器,batch size大小均使用,且除了學(xué)習(xí)率之外不需要別的參數(shù)調(diào)整。

基線BERT-Large模型需要100萬次迭代才能完成預(yù)訓(xùn)練,而batch size大小為65536/32768的LAMB僅需要8599次迭代。我們還將batch size進(jìn)行內(nèi)存限制,接近TPUv3 pod,結(jié)果可在76分鐘內(nèi)完成BERT訓(xùn)練。

據(jù)悉,該論文的一作是來自UC Berkeley計(jì)算機(jī)科學(xué)部的在讀博士尤洋,同時也是Google Brain的實(shí)習(xí)生。據(jù)公開信息顯示,尤洋的導(dǎo)師是美國科學(xué)院與工程院院士,ACM/IEEE fellow,伯克利計(jì)算機(jī)系主任,以及首批中關(guān)村海外顧問James Demmel教授。他當(dāng)前的研究重點(diǎn)是大規(guī)模深度學(xué)習(xí)訓(xùn)練算法的分布式優(yōu)化。2017年9月,尤洋等人的新算法以24分鐘完成ImageNet訓(xùn)練,刷新世界紀(jì)錄。

在此之前,他曾在英特爾實(shí)驗(yàn)室、微軟研究院、英偉達(dá)、IBM沃森研究中心等機(jī)構(gòu)實(shí)習(xí)。尤洋本科就讀于中國農(nóng)業(yè)大學(xué)計(jì)算機(jī)系,碩士保送清華大學(xué)計(jì)算機(jī)系,是一名杠杠的理工學(xué)霸!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4825

    瀏覽量

    106737
  • TPU
    TPU
    +關(guān)注

    關(guān)注

    0

    文章

    164

    瀏覽量

    21524
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5589

    瀏覽量

    123881
  • 訓(xùn)練模型
    +關(guān)注

    關(guān)注

    1

    文章

    37

    瀏覽量

    4046

原文標(biāo)題:1024塊TPU在燃燒!BERT訓(xùn)練從3天縮短到76分鐘 | 技術(shù)頭條

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    本帖欲分享Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是
    發(fā)表于 10-22 07:03

    基于大規(guī)模人類操作數(shù)據(jù)預(yù)訓(xùn)練的VLA模型H-RDT

    近年來,機(jī)器人操作領(lǐng)域的VLA模型普遍基于跨本體機(jī)器人數(shù)據(jù)集預(yù)訓(xùn)練,這類方法存在兩大局限:不同機(jī)器人本體和動作空間的差異導(dǎo)致統(tǒng)一訓(xùn)練困難;現(xiàn)有大規(guī)模機(jī)器人演示數(shù)據(jù)稀缺且質(zhì)量參差不齊。得
    的頭像 發(fā)表于 08-21 09:56 ?755次閱讀
    基于大規(guī)模人類操作數(shù)據(jù)<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的VLA<b class='flag-5'>模型</b>H-RDT

    海思SD3403邊緣計(jì)算AI數(shù)據(jù)訓(xùn)練概述

    模型模型轉(zhuǎn)化為嵌入式AI模型,模型升級AI攝像機(jī),進(jìn)行AI識別應(yīng)用。 AI訓(xùn)練
    發(fā)表于 04-28 11:11

    陣列云訓(xùn)練到推理

    云場景下,陣列云(分布式計(jì)算集群)模型訓(xùn)練到推理的完整技術(shù)流程可結(jié)構(gòu)化分解如下: 一、訓(xùn)練階段技術(shù)實(shí)現(xiàn) 1,資源動態(tài)編排? 基于Kube
    的頭像 發(fā)表于 03-28 08:32 ?530次閱讀

    請問如何在imx8mplus上部署和運(yùn)行YOLOv5訓(xùn)練模型?

    我正在從事 imx8mplus yocto 項(xiàng)目。我已經(jīng)自定義數(shù)據(jù)集上的 YOLOv5 上訓(xùn)練了對象檢測模型。它在 ubuntu 電腦上運(yùn)行良好?,F(xiàn)在我想在我的 imx8mplus 板上運(yùn)行該
    發(fā)表于 03-25 07:23

    用PaddleNLP為GPT-2模型制作FineWeb二進(jìn)制預(yù)訓(xùn)練數(shù)據(jù)集

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 《用PaddleNLP4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)》發(fā)布后收到讀者熱烈反響,很多讀者要求進(jìn)一步講解更多的技術(shù)細(xì)節(jié)。本文主要針對大語言
    的頭像 發(fā)表于 03-21 18:24 ?3766次閱讀
    用PaddleNLP為GPT-2<b class='flag-5'>模型</b>制作FineWeb二進(jìn)制<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>數(shù)據(jù)集

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功怎么處理?

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功咋辦,試了好幾個模型壓縮了也不行,ram占用過大,有無解決方案?
    發(fā)表于 03-11 07:18

    使用OpenVINO? 2021.4經(jīng)過訓(xùn)練的自定義PyTorch模型加載為IR格式時遇到錯誤怎么解決?

    使用 OpenVINO? 2021.4 經(jīng)過訓(xùn)練的自定義 PyTorch 模型加載為 IR 格式時遇到錯誤: RuntimeError: [ GENERAL_ERROR ] Failed
    發(fā)表于 03-05 08:40

    Open Model Zoo下載的FastSeg大型公共預(yù)訓(xùn)練模型,無法導(dǎo)入名稱是怎么回事?

    Open Model Zoo 下載的 FastSeg 大型公共預(yù)訓(xùn)練模型。 運(yùn)行 converter.py 以 FastSeg
    發(fā)表于 03-05 07:22

    用PaddleNLP4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 之前我們分享了《從零開始訓(xùn)練一個大語言模型需要投資多少錢》,其中高昂的預(yù)訓(xùn)練費(fèi)用讓許多對大模型
    的頭像 發(fā)表于 02-19 16:10 ?2113次閱讀
    用PaddleNLP<b class='flag-5'>在</b>4060單卡上實(shí)踐大<b class='flag-5'>模型</b><b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>技術(shù)

    馬斯克揭秘Grok 3訓(xùn)練成本:20萬英偉達(dá)GPU

    近日,馬斯克旗下的xAI公司正式推出了其新一代大模型——Grok 3。備受矚目的發(fā)布會直播中,馬斯克親自披露了Grok 3訓(xùn)練成本,這一
    的頭像 發(fā)表于 02-19 09:39 ?1175次閱讀

    騰訊公布大語言模型訓(xùn)練新專利

    近日,騰訊科技(深圳)有限公司公布了一項(xiàng)名為“大語言模型訓(xùn)練方法、裝置、計(jì)算機(jī)設(shè)備及存儲介質(zhì)”的新專利。該專利的公布,標(biāo)志著騰訊大語言模型訓(xùn)練
    的頭像 發(fā)表于 02-10 09:37 ?691次閱讀

    模型訓(xùn)練框架(五)之Accelerate

    Hugging Face 的 Accelerate1是一個用于簡化和加速深度學(xué)習(xí)模型訓(xùn)練的庫,它支持多種硬件配置上進(jìn)行分布式訓(xùn)練,包括 CPU、GPU、
    的頭像 發(fā)表于 01-14 14:24 ?1761次閱讀

    KerasHub統(tǒng)一、全面的預(yù)訓(xùn)練模型

    深度學(xué)習(xí)領(lǐng)域正在迅速發(fā)展,處理各種類型的任務(wù)中,預(yù)訓(xùn)練模型變得越來越重要。Keras 以其用戶友好型 API 和對易用性的重視而聞名,始終處于這一動向的前沿。Keras 擁有專用的內(nèi)
    的頭像 發(fā)表于 12-20 10:32 ?761次閱讀

    GPU是如何訓(xùn)練AI大模型

    AI模型訓(xùn)練過程中,大量的計(jì)算工作集中矩陣乘法、向量加法和激活函數(shù)等運(yùn)算上。這些運(yùn)算正是GPU所擅長的。接下來,AI部落小編帶您了解GPU是如何
    的頭像 發(fā)表于 12-19 17:54 ?1282次閱讀