摘??要:為實時在線自動獲取光伏陣列各分支的電壓、電流、溫濕度、水平照度和有效照度等精確值,便于在不影響發(fā)電的情況下自動實現(xiàn)對光伏陣列的在線周期性精細(xì)檢測,以提高光伏電站對發(fā)電效率的預(yù)測和對異常狀況的維護(hù),設(shè)計了一種智能光伏電站數(shù)據(jù)匯聚管理系統(tǒng)。系統(tǒng)采用模塊化設(shè)計,可根據(jù)實際需要靈活配置傳感器,以窄帶物聯(lián)網(wǎng)(NB?IoT)和 LoRa為通信方式,采用 UCOSⅢ嵌入式系統(tǒng)和消息隊列遙測傳輸協(xié)議(MQTT)云服務(wù)器進(jìn)行數(shù)據(jù)傳輸和存儲。系統(tǒng)在配置要求極低的情況下,能保證可靠的數(shù)據(jù)傳輸,使多平臺的客戶端實時查看當(dāng)前各光伏子陣列的運行情況,優(yōu)化數(shù)據(jù)傳輸及采集速度,實現(xiàn)對各種數(shù)據(jù)的實時監(jiān)控,并及時發(fā)出預(yù)警信息。整體系統(tǒng)易于組裝配置,成本低,具有較好的工程指導(dǎo)意義。
關(guān)鍵詞:光伏陣列;數(shù)據(jù)融合管理;模塊化;實時狀態(tài);NB?IoT;LoRa
中圖分類號:TN919.2?34;TM615? ?文獻(xiàn)標(biāo)識碼:A
文章編號:1004?373X(2022)03?0142?06
0 引 言
為了降低光伏陣列、逆變器之間連接的復(fù)雜性,太陽能發(fā)電系統(tǒng)通過一定數(shù)量相同的光伏組件按規(guī)范串聯(lián)連接,構(gòu)成一個子光伏陣列,然后各個子陣列接入光伏電站匯流箱并連接逆變器[1],構(gòu)成了一個可以并入電網(wǎng)的光伏發(fā)電系統(tǒng)。
近年來,光伏發(fā)電系統(tǒng)規(guī)模在不斷擴(kuò)大,但太陽能具有受季節(jié)、天氣、晝夜影響大和隨機(jī)性強的特點,不利于電網(wǎng)的安全穩(wěn)定運行,有學(xué)者研究指出,當(dāng)光伏發(fā)電占比超過 15% 時,有造成電網(wǎng)癱瘓[2]的風(fēng)險。光伏功率預(yù)測作為一種緩解該問題的方案被提出,光伏數(shù)據(jù)的收集和管理也成為研究的重點。此外,市場占有率約 70%的多晶硅太陽能電池的使用壽命約為25年[1],但通常實際工作環(huán)境較為惡劣,易發(fā)生材料老化等故障,對光伏陣列各類數(shù)據(jù)的監(jiān)測也有利于在線診斷與故障定位。
目前提出的多種光伏電站數(shù)據(jù)管理系統(tǒng),主要設(shè)計為針對匯流箱電路的監(jiān)測,包括輸出總電流、總電壓、系統(tǒng)避雷器狀態(tài)、系統(tǒng)斷路器狀態(tài)顯示。有研究提出將ARM Cotex?M3處理器用于控制器設(shè)備[3],并使用小型的TCP/IP協(xié)議棧(LwIP)監(jiān)視數(shù)據(jù)[4],從而可以實現(xiàn)系統(tǒng)各種環(huán)境參數(shù)的測量、數(shù)據(jù)分類和故障識別,但是系統(tǒng)部署復(fù)雜,可拓展性較差,部署完成后較難對其改進(jìn),無法實現(xiàn)模塊化拼接,這些問題都使得系統(tǒng)難以方便的安裝配置。也有研究提出一種以ZigBee為核心通信方式的無線傳感器網(wǎng)絡(luò)數(shù)據(jù)管理系統(tǒng)[5],可以監(jiān)控光伏電站系統(tǒng)的環(huán)境參數(shù),實時將數(shù)據(jù)上傳并收集到系統(tǒng)中,但是受限于 ZigBee 傳輸特性[6],所處頻段衍射能力弱,數(shù)據(jù)無法遠(yuǎn)程傳輸,且實際工程應(yīng)用時設(shè)備安裝位置固定,自組網(wǎng)的優(yōu)點不復(fù)存在,但其自組網(wǎng)耗費時間與資源的問題卻依然存在。文獻(xiàn)[7]提出使用 DSP 作為數(shù)據(jù)管理系統(tǒng)設(shè)計的主控制芯片,通過 CAN 總線的方式準(zhǔn)確記錄光伏設(shè)施的不同參數(shù)讀數(shù),然后將其通過局域網(wǎng)傳輸?shù)奖镜赜嬎銠C(jī),該系統(tǒng)旨在連接多個設(shè)備,如果發(fā)生故障,則系統(tǒng)將向連接的設(shè)備發(fā)送警報,但系統(tǒng)設(shè)計無法準(zhǔn)確提供光伏子陣列的具體情況,無法有效地對光伏陣列進(jìn)行故障檢測。以上的多種光伏陣列匯流箱管理系統(tǒng)的設(shè)計僅是檢測匯合輸出后的電能狀態(tài),無法達(dá)到對光伏陣列發(fā)電系統(tǒng)的維護(hù)要求。此外,現(xiàn)有的在線故障監(jiān)測方法仍以電路測試為主,較為先進(jìn)的利用人工智能算法檢測方法[8],因需要大量的實測數(shù)據(jù),未能進(jìn)一步推廣。
針對現(xiàn)有光伏電站數(shù)據(jù)匯聚管理系統(tǒng)技術(shù)的不足,本文提出了一種基于物聯(lián)網(wǎng)技術(shù)的光伏陣列智能光伏電站數(shù)據(jù)匯聚管理系統(tǒng)。該系統(tǒng)利用模塊化設(shè)計的多傳感器采集實時電氣和氣象數(shù)據(jù),并利用 UCOSⅢ嵌入式系統(tǒng)和 MQTT 協(xié)議確??煽康臄?shù)據(jù)發(fā)布,各平臺的客戶端可以實時查看匯總輸出的電能數(shù)據(jù)及每個子光伏陣列的運行狀態(tài)。與現(xiàn)有的光伏電站數(shù)據(jù)匯聚管理系統(tǒng)相比,該系統(tǒng)能夠?qū)崟r監(jiān)控數(shù)據(jù),可以科學(xué)地監(jiān)控光伏發(fā)電系統(tǒng),在短時間內(nèi)發(fā)現(xiàn)故障及時發(fā)出預(yù)警信息,方便維修維護(hù)。同時,系統(tǒng)采集數(shù)據(jù)更加完整,能夠更有效地為超短期電網(wǎng)發(fā)電量預(yù)測提供數(shù)據(jù)支持,從而更好地對光伏電站系統(tǒng)的輸出功率進(jìn)行科學(xué)調(diào)節(jié)。
1 系統(tǒng)結(jié)構(gòu)組成
該系統(tǒng)主要由環(huán)境參數(shù)檢測子系統(tǒng)、匯流箱子系統(tǒng)、MQTT消息隊列服務(wù)器、多平臺客戶端等四部分組成。系統(tǒng)總體框架如圖1所示。
其中環(huán)境參數(shù)檢測子系統(tǒng)通過各類傳感器測量每個光伏子陣列的電壓、電流參數(shù),以及所處環(huán)境的溫度、濕度、水平照度和有效照度參數(shù);傳感器采用標(biāo)準(zhǔn)接口連接,可按需連接并初始化;該子系統(tǒng)再通過板載的LoRa模塊將數(shù)據(jù)無線傳輸?shù)絽R流箱子系統(tǒng)中。匯流箱子系統(tǒng)將進(jìn)一步采集光伏陣列匯流后輸出的電流和電壓值,以此計算,還可以得出光伏的相應(yīng)輸出功率。然后該子系統(tǒng)對采集到的數(shù)據(jù)進(jìn)一步匯總并對其編碼,再通過NB?IoT模塊上傳到MQTT消息隊列服務(wù)器,結(jié)構(gòu)圖2所示。
在實際應(yīng)用環(huán)境下各個模塊的距離較遠(yuǎn),因此環(huán)境參數(shù)檢測子系統(tǒng)采用 LoRa 的方式與匯流箱子系統(tǒng)通信。LoRa網(wǎng)絡(luò)易于建設(shè)和部署,可以通過配置信道等方式靈活組網(wǎng)。有研究表明,覆蓋面積約 100 km2,僅需部署6個LoRa網(wǎng)關(guān),可支持終端規(guī)模3000 個,部署時間僅需兩周[9],足以覆蓋光伏陣列的范圍。環(huán)境參數(shù)檢測子系統(tǒng)配置有多種傳感器接口,相互獨立的程序設(shè)計使得傳感器可按需連接并初始化,易于多點部署在不同的光伏陣列位置,按需組網(wǎng)。
多平臺訂閱客戶端包括手機(jī)和電腦兩個部分,只需要將設(shè)備連接到數(shù)據(jù)網(wǎng)絡(luò),連接并登錄系統(tǒng)服務(wù)器后訂閱相關(guān)主題,服務(wù)器便會自動將訂閱主題的數(shù)據(jù)內(nèi)容發(fā)送到客戶端應(yīng)用程序上顯示。而電腦端監(jiān)控軟件除網(wǎng)絡(luò)連接外,還有本地連接方式。本地連接是指在系統(tǒng)維護(hù)期間執(zhí)行的本地操作,如發(fā)生意外情況(例如網(wǎng)絡(luò)異常),可直接通過數(shù)據(jù)線連接匯流箱子系統(tǒng)以讀取所需的數(shù)據(jù)內(nèi)容。
系統(tǒng)云端服務(wù)器為基于MQTT協(xié)議的EMQ平臺[10]。EMQ平臺可以很好地加載拓展插件,并且作為百萬級別的消息隊列服務(wù)器,能確保在系統(tǒng)中高效安全地傳輸數(shù)據(jù)[11]。MQTT協(xié)議是一種基于發(fā)布訂閱模型的輕量級通信協(xié)議,工作模式和服務(wù)質(zhì)量可自由選擇配置,數(shù)據(jù)內(nèi)容能按需到達(dá)接收端,適用于在不穩(wěn)定工作狀態(tài)下的網(wǎng)絡(luò)傳輸需求EMQ平臺需要的資源非常少,在實際應(yīng)用中,網(wǎng)絡(luò)帶寬等資源的數(shù)量較小。由于設(shè)備是實時推送的,系統(tǒng)不必保證每個數(shù)據(jù)都是完全正確的,因此采用Qos0的方式[12]進(jìn)行傳輸。服務(wù)器通過解析數(shù)據(jù)將編碼的壓縮數(shù)據(jù)解譯為多個傳感器參數(shù),并執(zhí)行隊列發(fā)布功能。MQTT通信結(jié)構(gòu)如圖3所示。
2 硬件設(shè)計
環(huán)境參數(shù)檢測子系統(tǒng)及匯流箱子系統(tǒng)的硬件電路均采用 STM32F103 系列芯片作為核心處理器,擁有較低的功耗及充足的資源運行。
在環(huán)境參數(shù)監(jiān)測子系統(tǒng)中,主要由STM32最小系統(tǒng)、溫濕度光照度監(jiān)測模塊、INA219 電流模塊、LoRa通信模塊、短路電流測試模塊、電源穩(wěn)壓電路六大部分構(gòu)成。由于設(shè)計裝置安裝環(huán)境相對惡劣,系統(tǒng)采用了較穩(wěn)定的鉛酸電池進(jìn)行供電。為盡量減少維護(hù)工作,使系統(tǒng)能獨自長時間運行,所以需要系統(tǒng)在白天太陽能面板有充足光照的情況下使用太陽能面板供電,并同時能夠?qū)︺U蓄電池進(jìn)行充電,而在陰雨天氣或是夜晚缺少陽光的情況下電源自動切換到使用鉛蓄電池供電。如圖4所示,電源供電系統(tǒng)在該流程下能夠保證穩(wěn)定運行,鉛酸電池的容量按照光伏陣列處于無光情況下能夠穩(wěn)定供電 7天以上的需求進(jìn)行設(shè)計。
集成的溫濕度照度傳感器硬件連接結(jié)構(gòu)圖如圖5所示,可以直接讀取周圍環(huán)境的溫度、濕度和照度,但由于照度并不能充分代表光伏陣列的發(fā)電能力,所以該系統(tǒng)增加了對光陣列樣板短路電流的測量。經(jīng)過實際調(diào)試發(fā)現(xiàn),如果太陽能光伏板在強光下長時間短路,會導(dǎo)致電池板發(fā)熱,損壞太陽能板。因此,系統(tǒng)設(shè)計采用繼電器控制減少太陽能電池板的短路時間,從而提高檢測的太陽能電池板的使用壽命。該系統(tǒng)實物圖如圖6所示。
匯流箱子系統(tǒng)是整個系統(tǒng)的數(shù)據(jù)采集部分,硬件結(jié)構(gòu)如圖7所示。通過LoRa模塊接收環(huán)境參數(shù)檢測子系統(tǒng)發(fā)送的相關(guān)環(huán)境數(shù)據(jù),并進(jìn)一步對匯流后的電能進(jìn)行總電壓、總電流的測量。完成所有的數(shù)據(jù)采集工作后,再對數(shù)據(jù)進(jìn)行編碼,然后通過窄帶物聯(lián)網(wǎng)模塊(NB?IoT)傳輸?shù)皆品?wù)器[13]。在窄帶物聯(lián)網(wǎng)模塊部分,采用具備MQTT協(xié)議的芯片 M5310?A,直接與系統(tǒng)構(gòu)建的EMQ服務(wù)器通信。該芯片在PSM模式下的工作電流只有9 μA,擁有極低的功耗。計算機(jī)串口部分采用CH340芯片設(shè)計,可以將 TTL 電平數(shù)據(jù)轉(zhuǎn)換為USB電平數(shù)據(jù)。計算機(jī)只需要安裝驅(qū)動程序就可以與系統(tǒng)進(jìn)行通信。匯流箱子系統(tǒng)的實物設(shè)計圖如圖8所示。
此外,針對不同應(yīng)用場景所需要的傳感器類型也有不同的問題,硬件設(shè)計方面采取了模塊化插件設(shè)計,環(huán)境參數(shù)檢測子系統(tǒng)與匯流箱子系統(tǒng)的傳感器模塊均設(shè)計為接插件方式,僅保留通信接口的模式極大地提升了硬件電路的靈活性。
3 軟件設(shè)計
光伏電站智能數(shù)據(jù)匯聚管理系統(tǒng)的軟件程序部分主要是環(huán)境參數(shù)監(jiān)測子系統(tǒng)和匯流箱子系統(tǒng)。
對于光伏陣列環(huán)境參數(shù)的實時測量部分,在初始化所有傳感器驅(qū)動后,單片機(jī)將向溫濕度照度傳感器發(fā)送一個讀取數(shù)據(jù)的命令,傳感器將以Modbus?RTU協(xié)議的格式返回所需數(shù)據(jù),通過對校驗位的驗證,可以保證接收到數(shù)據(jù)的有效性。對于有效照度的數(shù)據(jù)采集,光伏板長時間被太陽加熱后短路電流不穩(wěn)定,因此,繼電器模塊通過繼電器編程控制短路時間,程序設(shè)置每30s短路1s,檢測短路電流。具體程序流程圖如圖9所示。
匯合箱子系統(tǒng)運用LoRa模塊通過USART協(xié)議接收環(huán)境參數(shù)等數(shù)據(jù),然后與自身測量得到的數(shù)據(jù)匯總編碼并上傳服務(wù)器端。數(shù)據(jù)編碼時,各個數(shù)據(jù)都具有采集來源的標(biāo)簽,此時通過服務(wù)器的分析即可分辨出數(shù)據(jù)是否異常,如若出現(xiàn)異常數(shù)據(jù)即可通過標(biāo)簽推送至各個平臺的客戶端,這對光伏系統(tǒng)的維護(hù)具有重要意義。
匯流箱子系統(tǒng)程序運行在UCOSⅢ嵌入式系統(tǒng)上,UCOSⅢ是一種基于ROM、搶占式的實時多任務(wù)內(nèi)核,具有高度便攜的單片機(jī)系統(tǒng),通過中斷服務(wù)管理任務(wù)調(diào)度用戶的任務(wù),以適應(yīng)不同條件下的組合箱環(huán)境。同樣,所有傳感器和通信模塊都具有獨立的驅(qū)動功能,使得程序也按照模塊化的需求進(jìn)行設(shè)計,進(jìn)一步保證系統(tǒng)的穩(wěn)定。在實際應(yīng)用中,如有額外需求,模塊化的設(shè)計也便于后續(xù)的開發(fā)。UCOSⅢ系統(tǒng)任務(wù)運行流程如圖10所示。
此外,Windows上位機(jī)采用LabVIEW編寫。圖形化程序主要分為兩個部分:接收區(qū)和發(fā)送區(qū)。整個工程軟件設(shè)計采用圖形化編程操作,使用圖形化編輯語言編寫程序,產(chǎn)生的程序為框圖的形式,如圖11所示。
4 系統(tǒng)測試實驗
本設(shè)計通過在實驗光伏陣列上進(jìn)行環(huán)境參數(shù)及電氣數(shù)據(jù)的采集測試。光伏陣列采用3個主串組成,環(huán)境參數(shù)檢測子系統(tǒng)安裝于光伏陣列旁,調(diào)節(jié)樣板角度與光伏陣列角度相同,將子系統(tǒng)與光伏陣列輸出節(jié)點相連進(jìn)行供電。匯流箱子系統(tǒng)安裝于實驗室內(nèi),接入各個組串輸出及匯流裝置,并對上位機(jī)進(jìn)行相應(yīng)的初始化配置。實驗數(shù)據(jù)采集及故障定位效果如圖12所示。
實驗證明本文設(shè)計的數(shù)據(jù)匯聚管理系統(tǒng)能夠有效地采集光伏陣列的相關(guān)數(shù)據(jù),完成故障定位,并為超短期預(yù)測提供了準(zhǔn)確的原始數(shù)據(jù)。
5 系統(tǒng)功能與優(yōu)點
本文設(shè)計的智能光伏電站數(shù)據(jù)匯聚管理系統(tǒng)在功能上可以實時測量周圍環(huán)境的溫度、濕度、水平照度等參數(shù),設(shè)計的短路電流測量更能準(zhǔn)確地反映太陽能光伏陣列運行時的有效照度信息。匯流箱子系統(tǒng)可以采集相關(guān)數(shù)據(jù)并編碼,實現(xiàn)對光伏電站相關(guān)數(shù)據(jù)的科學(xué)監(jiān)測,對光伏電站的運行維護(hù)起到很大的作用。云服務(wù)器采用 MQTT 協(xié)議,已實現(xiàn)數(shù)據(jù)的傳輸、儲存、發(fā)布,并實時監(jiān)控光伏陣列,當(dāng)子光伏陣列出現(xiàn)異常時,即可向各個平臺的客戶端發(fā)送異常提示,對光伏陣列的維護(hù)有著重要意義。
本地客戶端能夠直接連接硬件訪問數(shù)據(jù),了解光伏電站系統(tǒng)設(shè)備的運行情況,防止網(wǎng)絡(luò)異常等突發(fā)情況對系統(tǒng)的影響。對于聯(lián)網(wǎng)客戶端,只需連接服務(wù)器,即可遠(yuǎn)程接收光伏電站系統(tǒng)數(shù)據(jù),進(jìn)一步對光伏陣列運行狀態(tài)進(jìn)行分析。
本文的數(shù)據(jù)融合管理系統(tǒng)可以實時采集光伏陣列多種數(shù)據(jù),通過采集的數(shù)據(jù)能夠?qū)崿F(xiàn)對光伏電量的超短期預(yù)測,預(yù)測電站的功率大小,為電站管理者調(diào)配電網(wǎng)提供數(shù)據(jù)依據(jù)[14],通過增減光伏發(fā)電與其他發(fā)電形式在電網(wǎng)中所占的比例,達(dá)到穩(wěn)定電網(wǎng)的目的,降低光伏發(fā)電的隨機(jī)性對電網(wǎng)的沖擊。模塊化的軟硬件設(shè)計使得該系統(tǒng)具有極強的工程實用性,在不同需求的環(huán)境下,只需要裝配不同的系統(tǒng)組件即可實現(xiàn)組網(wǎng)運行。若有其他環(huán)境數(shù)據(jù)需要采集,該系統(tǒng)也具有較好的拓展性,便于進(jìn)一步開發(fā)。該設(shè)計的數(shù)據(jù)傳輸方式多,充分發(fā)揮了LoRa傳輸距離遠(yuǎn)節(jié)點多的特點,能夠很好地覆蓋光伏陣列范圍,匯流箱子系統(tǒng)利用NB?IoT連接蜂窩網(wǎng)絡(luò)的特點,上傳云端,多平臺數(shù)據(jù)共享。多級傳輸過程中充分發(fā)揮不同傳輸網(wǎng)絡(luò)的優(yōu)勢。綜上所述,該系統(tǒng)對提高光伏電站系統(tǒng)的管理和運行維護(hù)起到了重要作用。
6 結(jié) 論
本文設(shè)計了一種基于物聯(lián)網(wǎng)技術(shù)的光伏陣列智能光伏電站數(shù)據(jù)融合管理系統(tǒng),將窄帶物聯(lián)網(wǎng)應(yīng)用到光伏電站的數(shù)據(jù)管理系統(tǒng)中。與其他數(shù)據(jù)管理系統(tǒng)相比,本設(shè)計功能完整,分階段靈活采用不同的通信方式,達(dá)到遠(yuǎn)距離接收和處理檢測到的數(shù)據(jù)的目的,不受空間限制。系統(tǒng)的數(shù)據(jù)傳輸更加穩(wěn)定高效,設(shè)備功耗低,與云服務(wù)器的連接能力強。此外,系統(tǒng)還可以靈活配置傳感器模塊,易于大規(guī)模組網(wǎng)使用,成本較低。
本文的設(shè)計具有廣闊的應(yīng)用前景,系統(tǒng)的設(shè)計理念與特點還可以廣泛應(yīng)用于其他領(lǐng)域,可以通過與大數(shù)據(jù)、人工智能結(jié)合[15],在智能家居領(lǐng)域、公用事業(yè)領(lǐng)域、醫(yī)療衛(wèi)生等領(lǐng)域發(fā)揮重要作用?!?/p>
評論