求一個simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機加速勻速減速運動的模型仿真
2020-02-22 02:17:03
一文看懂BP神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)數(shù)學(xué)知識
2020-06-16 07:14:35
第1章 BP神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)分類——語音特征信號的分類
2020-04-28 08:05:42
參考文獻用labview編寫的一個3層BP神經(jīng)網(wǎng)絡(luò)程序
2015-05-28 10:35:08
請問用matlab編程進行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時,訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進行外推預(yù)測?
2014-02-08 14:19:12
神經(jīng)網(wǎng)絡(luò)算法怎么去控制溫控系統(tǒng),為什么不用pid控制
2023-10-27 06:10:14
03_深度學(xué)習(xí)入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05
神經(jīng)元 第3章 EBP網(wǎng)絡(luò)(反向傳播算法) 3.1 含隱層的前饋網(wǎng)絡(luò)的學(xué)習(xí)規(guī)則 3.2 Sigmoid激發(fā)函數(shù)下的BP算法 3.3 BP網(wǎng)絡(luò)的訓(xùn)練與測試 3.4 BP算法的改進 3.5 多層
2012-03-20 11:32:43
問題,一個是神經(jīng)網(wǎng)絡(luò)的移植,另一個是STM32的計算速度。神經(jīng)網(wǎng)絡(luò)的移植網(wǎng)絡(luò)采用的是最簡單的BP神經(jīng)網(wǎng)絡(luò),基本原理可以自己去了解一下,大概就是通過若干次矩陣運算AX+BAX+BAX+B將m個輸入對應(yīng)到n
2022-01-11 06:20:53
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
誤差反向傳播算法的學(xué)習(xí)過程,由信息的正向傳播和誤差的反向傳播兩個過程組成,是一種應(yīng)用最為廣泛的神經(jīng)網(wǎng)絡(luò)。先來看一下BP神經(jīng)網(wǎng)絡(luò)的流程圖:由BP神經(jīng)網(wǎng)絡(luò)流程圖可以看出,正向傳播處理過程和人工神經(jīng)網(wǎng)絡(luò)的流程
2018-06-05 10:11:50
MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)說明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡明起見,只列出了函數(shù)名,若需要進一步的說明,請參閱MATLAB的幫助文檔。1. 網(wǎng)絡(luò)創(chuàng)建函數(shù)newp
2009-09-22 16:10:08
請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08
正在做畢設(shè),老師又給打回來了,課題是基于labview的bp神經(jīng)網(wǎng)絡(luò)算法的實現(xiàn),求助大神給點指導(dǎo),謝啦
2012-05-14 15:44:50
傳播的,不會回流),區(qū)別于循環(huán)神經(jīng)網(wǎng)絡(luò)RNN。BP算法(Back Propagation):誤差反向傳播算法,用于更新網(wǎng)絡(luò)中的權(quán)重。BP神經(jīng)網(wǎng)絡(luò)思想:表面上:1. 數(shù)據(jù)信息的前向傳播,從輸入層到隱含層
2019-07-21 04:00:00
人工神經(jīng)網(wǎng)絡(luò)在傳感器數(shù)據(jù)融合中的應(yīng)用針對壓力傳感器對溫度的交叉靈敏度,采用BP 人工神經(jīng)網(wǎng)絡(luò)法對其進行數(shù)據(jù)融合處理,消除溫度對壓力傳感器的影響,大大提高了傳感器的穩(wěn)定性及其精度,效果良好。關(guān)鍵詞
2009-08-11 20:23:46
簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
請問用matlab編程進行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時,訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進行外推預(yù)測?
2014-02-08 14:23:06
求大神們 給點關(guān)于開關(guān)磁阻電機的matlab BP神經(jīng)網(wǎng)絡(luò)數(shù)學(xué)建模方面的資料
2014-11-17 11:16:43
propagation algorithm,BP)[22]。BP 算法采用 Sigmoid 進行非線性映射,有效解決了 非線性分類和學(xué)習(xí)的問題,掀起了神經(jīng)網(wǎng)絡(luò)第二次 研究高潮。BP 網(wǎng)絡(luò)是迄今為止最常用的神經(jīng)網(wǎng)絡(luò), 目前
2022-08-02 10:39:39
反饋神經(jīng)網(wǎng)絡(luò)算法
2020-04-28 08:36:58
為提升識別準確率,采用改進神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進行訓(xùn)練。整體處理過程分為兩步:圖像預(yù)處理和改進神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個過程分為兩個步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33
最近一個月的時間沒有更博,跟隨老師出差談項目了。前段時間學(xué)習(xí)了電機的智能控制,這次把設(shè)計好的基于BP神經(jīng)網(wǎng)絡(luò)PID控制器應(yīng)用于雙閉環(huán)直流調(diào)速系統(tǒng)。雙閉環(huán)直流調(diào)速系統(tǒng)的動態(tài)數(shù)學(xué)模型如下圖所示: 外環(huán)為
2021-06-28 12:03:44
最近在學(xué)習(xí)電機的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
摘 要:本文給出了采用ADXL335加速度傳感器來采集五個手指和手背的加速度三軸信息,并通過ZigBee無線網(wǎng)絡(luò)傳輸來提取手勢特征量,同時利用BP神經(jīng)網(wǎng)絡(luò)算法進行誤差分析來實現(xiàn)手勢識別的設(shè)計方法
2018-11-13 16:04:45
基于BP神經(jīng)網(wǎng)絡(luò)的辨識
2018-01-04 13:37:27
本文設(shè)計了一種基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運動控制卡。
2021-06-03 06:05:09
`點擊學(xué)習(xí)>>《龍哥手把手教你學(xué)LabVIEW視覺設(shè)計》視頻教程用LabVIEW實現(xiàn)的BP人工神經(jīng)網(wǎng)絡(luò)曲線擬合,感謝LabVIEW的矩陣運算函數(shù),程序流程較之文本型語言清晰很多。[hide] [/hide]`
2011-12-13 16:41:43
本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA的實現(xiàn)驗證方案,詳細討論了實現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線設(shè)計。
2021-05-06 07:01:59
基于遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)的電子舌在黃酒檢測中的應(yīng)用采用遺傳學(xué)習(xí)算法和誤差反向傳播(BP)算法相結(jié)合的混合算法來訓(xùn)練前饋人工神經(jīng)網(wǎng)絡(luò),從而提高神經(jīng)網(wǎng)絡(luò)的收斂質(zhì)量和收斂速度,并將此算法運用到電子舌對黃酒
2009-09-19 09:32:15
,并能在腦海中重現(xiàn)這些圖像信息,這不僅與人腦的海量信息存儲能力有關(guān),還與人腦的信息處理能力,包括數(shù)據(jù)壓縮能力有關(guān)。在各種神經(jīng)網(wǎng)絡(luò)中,多層前饋神經(jīng)網(wǎng)絡(luò)具有很強的信息處理能力,由于其采用BP算法,因此也
2019-08-08 06:11:30
小弟想問下 那個神經(jīng)網(wǎng)絡(luò)參數(shù)和改進遺傳算法的圖標是從程序面板中哪里畫出來的?具體路徑哪里謝謝了
2013-03-16 14:55:09
例如BP神經(jīng)網(wǎng)絡(luò)
2018-03-07 19:44:24
求一個simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機加速勻速減速運動的模型仿真
2020-02-22 02:15:50
求一個基于BP神經(jīng)網(wǎng)絡(luò)PID控制器應(yīng)用于雙閉環(huán)直流調(diào)速系統(tǒng)BP_PID控制器學(xué)習(xí)參數(shù)怎么設(shè)置?
2021-10-13 08:10:12
誰有利用LABVIEW 實現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序?。ㄎ?b class="flag-6" style="color: red">用的版本是8.6的 )
2012-11-26 14:54:59
求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實現(xiàn)過程,最好有程序哈,謝謝??!
2012-12-10 14:55:50
針對模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練采用BP算法比較依賴于網(wǎng)絡(luò)的初始條件,訓(xùn)練時間較長,容易陷入局部極值的缺點,利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程.由于基本PSO算法存在
2010-05-06 09:05:35
關(guān)于遺傳算法和神經(jīng)網(wǎng)絡(luò)的
2013-05-19 10:22:16
摘要提出了一種綜合改進的BP 神經(jīng)網(wǎng)絡(luò)算法,該算法在訓(xùn)練時對不同的連接權(quán)和閾值采用不同的學(xué)習(xí)速率,由此建立了乙二醇精制塔塔釜乙二醇濃度的神經(jīng)網(wǎng)絡(luò)軟測量模型。結(jié)果表
2009-01-17 13:17:55
9 本文采用BP 多層前饋神經(jīng)網(wǎng)絡(luò)及其改進算法對傳感器特性進行補償. 提出附加動量法、自適應(yīng)參數(shù)變化法為主要內(nèi)容的BP 神經(jīng)網(wǎng)絡(luò)改進算法,有效地改善了BP 網(wǎng)絡(luò)傳統(tǒng)算法收斂慢、容
2009-07-02 08:35:17
14 為了從神經(jīng)網(wǎng)絡(luò)中獲取易于理解的知識,以小麥病害診斷為例,研究了BP 神經(jīng)網(wǎng)絡(luò)的規(guī)則抽取,提出一種基于結(jié)構(gòu)分析的BP 神經(jīng)網(wǎng)絡(luò)規(guī)則抽取方法。采用帶懲罰項的交錯熵誤差函
2009-07-30 09:18:09
13 本文討論了使用BP 神經(jīng)網(wǎng)絡(luò)PID 控制算法,并且將這種控制算法應(yīng)用在漂白工段的控制當中。利用神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)能力,在線整定PID 控制參數(shù)。實踐證明BP 神經(jīng)網(wǎng)絡(luò)PID控制器具有
2009-08-15 10:27:36
34 本文致力于基于神經(jīng)網(wǎng)絡(luò)的通信信號調(diào)制類型識別器設(shè)計研究。論文提出了一種改進的BP神經(jīng)網(wǎng)絡(luò)分類器,它采用7個特征參數(shù),可以對CW、2FSK、4FSK、8FSK、2PSK、4PSK、8PSK、8QAM、16QA
2009-08-29 10:22:10
10 應(yīng)用神經(jīng)網(wǎng)絡(luò)理論,建立了預(yù)測狀態(tài)監(jiān)測數(shù)據(jù)趨勢的BP 神經(jīng)網(wǎng)絡(luò)模型,并通MATLAB 實現(xiàn)了仿真編程。實驗中,選取多組數(shù)據(jù)對網(wǎng)絡(luò)進行了訓(xùn)練和測試,證實了算法和模型的有效性。
2009-09-11 15:53:10
26 BP 神經(jīng)網(wǎng)絡(luò)是目前用于模擬電路故障診斷的神經(jīng)網(wǎng)絡(luò)之一。本文應(yīng)用BP 神經(jīng)網(wǎng)絡(luò)完成了實際電路最優(yōu)測試集的生成設(shè)計,驗證了基于BP 神經(jīng)網(wǎng)絡(luò)的最優(yōu)測試集的生成的可行性和有
2009-12-16 16:08:33
9 研究了基于神經(jīng)網(wǎng)絡(luò)的多傳感器融合技術(shù),并將其應(yīng)用于自主吸塵機器人中。給出了神經(jīng)網(wǎng)絡(luò)傳感器融合技術(shù)的基本原理,探索了改進的BP 信息融合算法,使得改進后的算法在收斂
2009-12-31 12:00:14
11 本文首先介紹了傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)BP 算法的優(yōu)缺點,并結(jié)合模擬退火算法局部搜索全局的特點,提出將模擬退火算法和傳統(tǒng)的BP 算法相結(jié)合,形成一種新的BP 神經(jīng)網(wǎng)絡(luò)算法,有效的解
2010-01-09 11:57:05
12 為了準確檢測到EPS(電動助力轉(zhuǎn)向系統(tǒng))扭矩傳感器的具體故障部位,及時發(fā)現(xiàn)可能出現(xiàn)的故障,提高扭矩傳感器的可靠性,針對BP 神經(jīng)網(wǎng)絡(luò)的不足,提出了一種基于改進型BP 神經(jīng)
2010-01-11 12:20:59
16 提出了基于BP 神經(jīng)網(wǎng)絡(luò)的2DPCA 人臉識別算法。通過圖像預(yù)處理改善圖像質(zhì)量,降低圖像維數(shù),然后用2DPCA 進行特征提取,作為BP 神經(jīng)網(wǎng)絡(luò)的輸入,用改進的BP 神經(jīng)網(wǎng)絡(luò)作為分類
2010-01-18 12:27:14
18 BP神經(jīng)網(wǎng)絡(luò)的設(shè)計實例(MATLAB編程):例1 采用動量梯度下降算法訓(xùn)練 BP 網(wǎng)絡(luò)。 訓(xùn)練樣本定義如下: 輸入矢量為 p =[-1 -2 3 1
2010-02-08 13:20:08
125 采用神經(jīng)網(wǎng)絡(luò)控制方法! 建立了基于BP算法的神經(jīng)網(wǎng)絡(luò)有源消聲實驗系統(tǒng)" 實驗證明基于BP算法的有源消聲實驗系統(tǒng)具有良好的消聲效果和穩(wěn)定性"
2010-07-22 16:09:53
11 BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計
0 引 言??? 神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當前的研究熱點之一。人
2009-11-13 09:50:05
1408 BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計
概 述神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當前的研究熱點之一。人腦在接受視覺
2010-03-29 10:05:12
727 
摘要:研究一種前向型神經(jīng)網(wǎng)絡(luò)的改進學(xué)習(xí)算法并基于TI的TMS320C5402定點數(shù)字信號處理器開發(fā)系統(tǒng)實現(xiàn)該算法的訓(xùn)練學(xué)習(xí)。測試結(jié)果表明:網(wǎng)絡(luò)學(xué)習(xí)速率提高,網(wǎng)絡(luò)的輸出動態(tài)響應(yīng)具有超調(diào)
2011-02-25 00:27:27
49 針對BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)易陷入局部極
2011-03-07 14:59:59
99 傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)集成中各個自網(wǎng)絡(luò)間的相關(guān)性較大,從而影響集成的泛化能力,本內(nèi)容提出了基于負相關(guān)神經(jīng)網(wǎng)絡(luò)集成算法及其應(yīng)用
2011-05-26 15:45:49
18 提出了一種基于改進差分進化算法和 BP神經(jīng)網(wǎng)絡(luò) 的計算機網(wǎng)絡(luò)流量預(yù)測方法。利用差分進化算法的全局尋優(yōu)能力,快速地得到BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值;然后利用BP神經(jīng)網(wǎng)絡(luò)的非線性擬
2011-08-10 16:13:07
31 本文針對神經(jīng)網(wǎng)絡(luò)收斂速度慢的缺點,改進了BP算法,提高了網(wǎng)絡(luò)學(xué)習(xí)效率。接著用改進后的遺傳算法結(jié)合改進后的BP算法來改善神經(jīng)網(wǎng)絡(luò)的局部收斂。在對負荷變化規(guī)律分析的基礎(chǔ)上提
2011-09-07 16:22:16
36 在變流器故障診斷系統(tǒng)中,通過MATLAB對牽引變流器建立故障仿真模型,提取故障特征,對輸入輸出數(shù)據(jù)進行標幺化和模糊化的處理,并基于改進的動量BP神經(jīng)網(wǎng)絡(luò)算法,完成對變流器開
2012-04-12 15:58:33
35 文中將BP神經(jīng)網(wǎng)絡(luò)的原理應(yīng)用于參數(shù)辨識過程,結(jié)合傳統(tǒng)的 PID控制算法,形成一種改進型BP神經(jīng)網(wǎng)絡(luò)PID控制算法。該算法利用BP神經(jīng)網(wǎng)絡(luò)建立系統(tǒng)參數(shù)模型,能夠跟蹤被控對象的變化,取
2012-07-16 15:53:08
51 基于BP神經(jīng)網(wǎng)絡(luò)的SVPWM算法的研究與仿真
2016-04-15 18:29:16
11 基于模擬退火算法改進的BP神經(jīng)網(wǎng)絡(luò)算法_周愛武
2017-01-03 17:41:32
0 基于PSO改進的BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)手套手勢識別_李東潔
2017-01-07 15:26:08
3 BP神經(jīng)網(wǎng)絡(luò)在水質(zhì)參數(shù)預(yù)測中的應(yīng)用_張昕
2017-03-19 11:26:54
1 改進BP神經(jīng)網(wǎng)絡(luò)用于入侵檢測_丁玲
2017-03-19 11:30:43
1 基于BP神經(jīng)網(wǎng)絡(luò)的唇裂圖像研究_朱霞
2017-03-19 11:33:11
0 變壓器局放監(jiān)測與改進BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型研究_高立慧
2017-03-19 11:41:51
0 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法
2017-09-08 09:42:48
10 針對BP神經(jīng)網(wǎng)絡(luò)風(fēng)速預(yù)測中存在的結(jié)構(gòu)不確定以及網(wǎng)絡(luò)過度擬合的問題,利用遺傳算法的全局搜索能力和模糊聚類算法的數(shù)據(jù)篩選能力,分別對BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與數(shù)據(jù)進行雙重優(yōu)化,提出了基于遺傳算法和聚類算法的改進BP神經(jīng)網(wǎng)絡(luò)風(fēng)速預(yù)測方法,仿真表明,改進風(fēng)速后的預(yù)測方法大大提高了風(fēng)速預(yù)測的準確性。
2017-11-10 11:23:41
5 神經(jīng)網(wǎng)絡(luò)計算模型的優(yōu)化,運用到汽車加油量計算中,通過比較標準BP網(wǎng)絡(luò)、Srinivas提出的自適應(yīng)遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)和改進的自適應(yīng)遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)3種模型的計算誤差,驗證得出改進的自適應(yīng)遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的算法優(yōu)于另外兩種
2017-11-16 10:39:55
13 數(shù),然后訓(xùn)練改進的人工蜂群算法RBF神經(jīng)網(wǎng)絡(luò)預(yù)測模型,并將其應(yīng)用到某城市4天的短時交通流量數(shù)據(jù)的驗證。將實驗結(jié)果與傳統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)預(yù)測模型、BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型和小波神經(jīng)網(wǎng)絡(luò)預(yù)測模型進行了比較。對比結(jié)果表明,該方法對短時交通流
2017-12-01 16:31:58
2 基于BP神經(jīng)網(wǎng)絡(luò)的辨識,1986年,Rumelhart等提出了誤差反向傳播神經(jīng)網(wǎng)絡(luò),簡稱BP網(wǎng)絡(luò)(Back Propagation),該網(wǎng)絡(luò)是一種單向傳播的多層前向網(wǎng)絡(luò)。
誤差反向傳播
2017-12-06 15:11:58
0 為了提高網(wǎng)絡(luò)流量的預(yù)測精度,提出了一種改進的多種群量子遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量預(yù)測模型。在確定了神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)后,采用多種群量子遺傳算法對BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值進行優(yōu)化。該模型利用
2017-12-06 17:18:29
6 針對傳統(tǒng)稅收預(yù)測模型精度較低的問題,提出一種將Adaboost算法和BP神經(jīng)網(wǎng)絡(luò)相結(jié)合進行稅收預(yù)測的方法。該方法首先對歷年稅收數(shù)據(jù)進行預(yù)處理并初始化測試數(shù)據(jù)分布權(quán)值;然后初始化BP神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值
2018-02-27 16:51:44
0 BP 神經(jīng)網(wǎng)絡(luò)是一類基于誤差逆向傳播 (BackPropagation, 簡稱 BP) 算法的多層前饋神經(jīng)網(wǎng)絡(luò),BP算法是迄今最成功的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法?,F(xiàn)實任務(wù)中使用神經(jīng)網(wǎng)絡(luò)時,大多是在使用 BP
2018-06-19 15:17:15
42817 
本視頻主要詳細介紹了神經(jīng)網(wǎng)絡(luò)分類,分別是BP神經(jīng)網(wǎng)絡(luò)、RBF(徑向基)神經(jīng)網(wǎng)絡(luò)、感知器神經(jīng)網(wǎng)絡(luò)、線性神經(jīng)網(wǎng)絡(luò)、自組織神經(jīng)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)。
2019-04-02 15:29:22
12598 PID 控制算法簡單、應(yīng)用廣泛,既能消除余差,又能提高系統(tǒng)的穩(wěn)定性,但其P 環(huán)節(jié)、I 環(huán)節(jié)、D 環(huán)節(jié)的控制參數(shù)卻參數(shù)難以整定;BP 神經(jīng)網(wǎng)絡(luò)算法具有很強的數(shù)字運算能力,因此,可通過BP 神經(jīng)網(wǎng)絡(luò)
2019-10-11 16:06:48
38 本文檔的主要內(nèi)容詳細介紹的是MATLAB和BP人工神經(jīng)網(wǎng)絡(luò)算法源代碼與演示程序詳細資料免費下載 解壓后,運行CMMATools.exe即可 用于演示BP人工神經(jīng)網(wǎng)絡(luò)算法。
2020-03-23 08:00:00
5 BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò),其主要的特點是:信號是前向傳播的,而誤差是反向傳播的。具體來說,對于如下的只含一個隱層的神經(jīng)網(wǎng)絡(luò)模型:輸入向量應(yīng)為n個特征
2020-09-24 11:51:35
12806 
在 深度神經(jīng)網(wǎng)絡(luò)(DNN)模型與前向傳播算法 中,我們對DNN的模型和前向傳播算法做了總結(jié),這里我們更進一步,對DNN的反向傳播算法(Back Propagation,BP)做一個總結(jié)。 1. DNN反向傳播算法要解決的問題
2021-03-22 16:28:22
3110 
個 2×3×1 的神經(jīng)網(wǎng)絡(luò)即輸入層有兩個節(jié)點, 隱層含三個節(jié)點, 輸出層有一個節(jié)點,神經(jīng)網(wǎng)絡(luò)如圖示。
2021-03-25 10:03:05
10 BP神經(jīng)網(wǎng)絡(luò)基本原理資料免費下載。
2021-04-25 15:36:16
16 BP神經(jīng)網(wǎng)絡(luò)原理及應(yīng)用說明。
2021-04-27 10:48:11
14 人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡單實現(xiàn)說明。
2021-05-25 11:30:16
12 基于遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)及其仿真研究說明。
2021-05-31 17:01:06
16 通過對傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)缺點的分析,從參數(shù)選取、BP算法、激活函數(shù)、網(wǎng)絡(luò)結(jié)構(gòu)4個方面綜述了其改進方法。介紹了各種方法的原理、應(yīng)用背景及其在BP神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,同時分析了各種方法的優(yōu)缺點。指出不斷提高網(wǎng)絡(luò)的訓(xùn)練速度、收斂性和泛化能力仍是今后的研究方向,并展望了BP神經(jīng)網(wǎng)絡(luò)的研究重點。
2021-06-01 11:28:43
5 倒對于老年人來說是一個十分嚴重的問題,實時檢測老年人是否摔倒對于減輕摔倒造成的傷害具有重要意義。為此,文中提出了一種基于BP神經(jīng)網(wǎng)絡(luò)的摔倒檢測算法。該算法采用佩戴于腰部的六軸傳感器(MPU6050
2021-06-16 16:09:01
5 神經(jīng)網(wǎng)絡(luò)及BP與RBF的比較說明。
2021-06-18 09:59:11
22 基于改進郊狼優(yōu)化算法的淺層神經(jīng)網(wǎng)絡(luò)進化
2021-06-24 15:40:23
15 人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:18
2941 訓(xùn)練經(jīng)過約50次左右迭代,在訓(xùn)練集上已經(jīng)能達到99%的正確率,在測試集上的正確率為90.03%,單純的BP神經(jīng)網(wǎng)絡(luò)能夠提升的空間不大了,但kaggle上已經(jīng)有人有卷積神經(jīng)網(wǎng)絡(luò)在測試集達到了99.3%的準確率。
2024-03-20 09:58:44
38 
評論