chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>EMC/EMI設(shè)計(jì)>最大限度地減少SiC FET中的EMI和開(kāi)關(guān)損耗

最大限度地減少SiC FET中的EMI和開(kāi)關(guān)損耗

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

驅(qū)動(dòng)器源極引腳是如何降低開(kāi)關(guān)損耗

在導(dǎo)通數(shù)據(jù)中,原本2,742μJ的開(kāi)關(guān)損耗變?yōu)?,690μJ,損耗減少了約38%。在關(guān)斷數(shù)據(jù)中也從2,039μJ降至1,462μJ,損耗減少了約30%。
2020-07-17 17:47:44949

PFC MOSFET的開(kāi)關(guān)損耗測(cè)試方案

MOSFET/IGBT的開(kāi)關(guān)損耗測(cè)試是電源調(diào)試中非常關(guān)鍵的環(huán)節(jié),但很多工程師對(duì)開(kāi)關(guān)損耗的測(cè)量還停留在人工計(jì)算的感性認(rèn)知上,PFC MOSFET的開(kāi)關(guān)損耗更是只能依據(jù)口口相傳的經(jīng)驗(yàn)反復(fù)摸索,那么該如何量化評(píng)估呢?
2022-10-19 10:39:231504

MOS管的開(kāi)關(guān)損耗計(jì)算

MOS 管的開(kāi)關(guān)損耗對(duì)MOS 管的選型和熱評(píng)估有著重要的作用,尤其是在高頻電路中,比如開(kāi)關(guān)電源,逆變電路等。
2023-07-23 14:17:001217

如何最大限度地提高SiC MOSFET性能呢?

在高功率應(yīng)用中,碳化硅(SiC)MOSFET與硅(Si)IGBT相比具有多項(xiàng)優(yōu)勢(shì)。其中包括更低的傳導(dǎo)和開(kāi)關(guān)損耗以及更好的高溫性能。
2023-09-11 14:55:31347

全新ZVS升降壓穩(wěn)壓器的工作溫度可低至-55°C,適用于惡劣環(huán)境的應(yīng)用

ZVS 架構(gòu)在最大限度降低開(kāi)關(guān)損耗最大限度提高效率的同時(shí),還可實(shí)現(xiàn)高頻率工作。
2020-03-09 11:50:54933

意法半導(dǎo)體新MDmesh? K6 800V STPOWER MOSFET提高能效,最大限度降低開(kāi)關(guān)功率損耗

STPOWER MDmesh K6 新系列超級(jí)結(jié)晶體管改進(jìn)多個(gè)關(guān)鍵參數(shù),最大限度減少系統(tǒng)功率損耗,特別適合基于反激式拓?fù)涞恼彰鲬?yīng)用。
2021-10-26 11:53:38823

SiC MOSFET SCT3030KL解決方案

降低傳導(dǎo)和開(kāi)關(guān)損耗)、如何最大限度降低柵極損耗、如何降低系統(tǒng)寄生效應(yīng)的影響、如何減小導(dǎo)通電阻等問(wèn)題。首先,考慮到關(guān)斷能量、導(dǎo)通能量、米勒效應(yīng)等都會(huì)影響開(kāi)關(guān)行為。通過(guò)降低柵極電阻(RG)或者在關(guān)閉
2019-07-09 04:20:19

SiC-SBD大幅降低開(kāi)關(guān)損耗

SiC-SBD與Si-FRD(快速恢復(fù)二極管)的trr比較?;謴?fù)的時(shí)間trr很短,二極管關(guān)斷時(shí)的反向電流IR大幅減少,收斂也更快。簡(jiǎn)言之即,反向恢復(fù)電荷量Qrr少=開(kāi)關(guān)損耗小。開(kāi)關(guān)損耗小時(shí),有2個(gè)可能性
2019-03-27 06:20:11

SiC碳化硅MOS驅(qū)動(dòng)的PCB布局方法解析

。將功率 MOSFET 并聯(lián)時(shí),設(shè)計(jì)人員必須更密切地注意如何最大限度降低這些影響,因?yàn)槠骷g的電流分配不均會(huì)影響性能。例如,在開(kāi)關(guān)瞬變過(guò)程,在并聯(lián)增加一個(gè)器件會(huì)使 di/dt 倍增,從而可能導(dǎo)致
2022-03-24 18:03:24

減少涉及EMI合規(guī)性的技巧分享

接地的二次側(cè)。這里有四個(gè)可最大限度減少該問(wèn)題的常見(jiàn)技巧。進(jìn)行一次繞組,使最高 dV/dt 出現(xiàn)在外層上。電壓電勢(shì)會(huì)隨每個(gè)匝數(shù)變化。例如在反激拓?fù)?b class="flag-6" style="color: red">中,最大的電壓擺幅出現(xiàn)在連接 FET 漏極的一端(見(jiàn)圖…
2022-11-22 07:17:08

減少開(kāi)關(guān)損耗電源設(shè)計(jì)小技巧——軟開(kāi)關(guān)的選擇與設(shè)計(jì)

“軟開(kāi)關(guān)”是與“硬開(kāi)關(guān)”相對(duì)應(yīng)的。硬開(kāi)關(guān)是指在功率開(kāi)關(guān)的開(kāi)通和關(guān)斷過(guò)程,電壓和電流的變化比較大,產(chǎn)生開(kāi)關(guān)損耗和噪聲也較大,開(kāi)關(guān)損耗隨著開(kāi)關(guān)頻率的提高而增加,導(dǎo)致電路效率下降;開(kāi)關(guān)噪聲給電路帶來(lái)嚴(yán)重
2019-08-27 07:00:00

開(kāi)關(guān)電源EMI的來(lái)源及降低EMI的方法

的)電磁波發(fā)射器,可能干擾其他應(yīng)用,例如干擾AM頻段。這種效應(yīng)稱為EMI。為了確保功能正常運(yùn)行,最大限度減少EMI源非常重要。國(guó)際無(wú)線電干擾特別委員會(huì)(CISPR)定義了各種標(biāo)準(zhǔn),如作為汽車(chē)電氣
2019-06-03 00:53:17

開(kāi)關(guān)損耗包括哪幾種

一、開(kāi)關(guān)損耗包括開(kāi)通損耗和關(guān)斷損耗兩種。開(kāi)通損耗是指功率管從截止到導(dǎo)通時(shí)所產(chǎn)生的功率損耗;關(guān)斷損耗是指功率管從導(dǎo)通到截止時(shí)所產(chǎn)生的功率損耗。二、開(kāi)關(guān)損耗原理分析:(1)、非理想的開(kāi)關(guān)管在開(kāi)通時(shí),開(kāi)關(guān)
2021-10-29 07:10:32

開(kāi)關(guān)損耗更低,頻率更高,應(yīng)用設(shè)備體積更小的全SiC功率模塊

SiC-MOSFET和SiC-SBD(肖特基勢(shì)壘二極管)組成的類(lèi)型,也有僅以SiC-MOSFET組成的類(lèi)型。與Si-IGBT功率模塊相比,開(kāi)關(guān)損耗大大降低處理大電流的功率模塊,Si的IGBT與FRD
2018-12-04 10:14:32

最大限度減少電池驅(qū)動(dòng)器功耗讓設(shè)備持續(xù)運(yùn)行

解決方案,以最大限度減少電源驅(qū)動(dòng)設(shè)備的功耗、電壓尖峰和過(guò)熱。產(chǎn)品營(yíng)銷(xiāo)和應(yīng)用經(jīng)理Allen Chen表示:“我們依賴這些價(jià)值不菲的小裝置的電池可靠性,并盡可能長(zhǎng)時(shí)間保持充電。您絕對(duì)不想讓無(wú)人機(jī)在湖上
2019-08-09 04:45:04

最大限度地減小在汽車(chē)環(huán)境EMI,有什么好的實(shí)現(xiàn)辦法嗎?

請(qǐng)問(wèn)如何最大限度的減小在汽車(chē)環(huán)境EMI
2021-04-13 06:57:09

LTC1628-SYNC最大限度減少多輸出,大電流電源的輸入電容

DN249-LTC1628-SYNC最大限度減少多輸出,大電流電源的輸入電容
2019-06-17 08:42:47

MOS開(kāi)關(guān)損耗計(jì)算

如圖片所示,為什么MOS管的開(kāi)關(guān)損耗(開(kāi)通和關(guān)斷過(guò)程)的損耗是這樣算的,那個(gè)72pF應(yīng)該是MOS的輸入電容,2.5A是開(kāi)關(guān)電源限制的平均電流
2018-10-11 10:21:49

MOS管的開(kāi)關(guān)損耗和自身那些參數(shù)有關(guān)?

本帖最后由 小小的大太陽(yáng) 于 2017-5-31 10:06 編輯 MOS管的導(dǎo)通損耗影響最大的就是Rds,而開(kāi)關(guān)損耗好像不僅僅和開(kāi)關(guān)的頻率有關(guān),與MOS管的結(jié)電容,輸入電容,輸出電容都有關(guān)系吧?具體的關(guān)系是什么?有沒(méi)有具體計(jì)算開(kāi)關(guān)損耗的公式?
2017-05-31 10:04:51

【干貨】MOSFET開(kāi)關(guān)損耗分析與計(jì)算

工程師知道哪個(gè)參數(shù)起主導(dǎo)作用并更加深入理解MOSFET。1. 開(kāi)通過(guò)程MOSFET開(kāi)關(guān)損耗2. 關(guān)斷過(guò)程MOSFET開(kāi)關(guān)損耗3. Coss產(chǎn)生的開(kāi)關(guān)損耗4.Coss對(duì)開(kāi)關(guān)過(guò)程的影響希望大家看了本文,都能深入理解功率MOSFET的開(kāi)關(guān)損耗。
2021-01-30 13:20:31

為何使用 SiC MOSFET

。設(shè)計(jì)挑戰(zhàn)然而,SiC MOSFET 技術(shù)可能是一把雙刃劍,在帶來(lái)改進(jìn)的同時(shí),也帶來(lái)了設(shè)計(jì)挑戰(zhàn)。在諸多挑戰(zhàn),工程師必須確保:以最優(yōu)方式驅(qū)動(dòng) SiC MOSFET,最大限度降低傳導(dǎo)和開(kāi)關(guān)損耗最大限度
2017-12-18 13:58:36

優(yōu)化的DC/DC轉(zhuǎn)換器環(huán)路補(bǔ)償最大限度減少了大輸出電容器的數(shù)量

DN186- 優(yōu)化的DC / DC轉(zhuǎn)換器環(huán)路補(bǔ)償最大限度減少了大輸出電容器的數(shù)量
2019-08-06 07:09:13

SiC功率模塊使逆變器重量減少6kg、尺寸減少43%

的內(nèi)部結(jié)構(gòu)和優(yōu)化了散熱設(shè)計(jì)的新封裝,成功提高了額定電流。另外,與普通的同等額定電流的IGBT+FRD模塊相比,開(kāi)關(guān)損耗降低了75%(芯片溫度150℃時(shí))。不僅如此,利用SiC功率元器件的優(yōu)勢(shì)–高頻驅(qū)動(dòng),不僅
2018-12-04 10:24:29

SiC功率模塊的開(kāi)關(guān)損耗

SiC-MOSFET和SiC肖特基勢(shì)壘二極管的相關(guān)內(nèi)容,有許多與Si同等產(chǎn)品比較的文章可以查閱并參考。采用第三代SiC溝槽MOSFET,開(kāi)關(guān)損耗進(jìn)一步降低ROHM在行業(yè)率先實(shí)現(xiàn)了溝槽結(jié)構(gòu)
2018-11-27 16:37:30

具有通用輸入 (85 - 264VAC) 和雙路輸出(12V/2A 和 3.3V/0.5A)的初級(jí)側(cè)穩(wěn)壓反激包含BOM,原理圖及光繪文件

減少 FET 開(kāi)關(guān)損耗以提供高效率。UCC28740 的電流調(diào)節(jié)特性可提供精確的電流限制保護(hù)。主要特色通用輸入 85 -264VAC雙路輸出輸出恒定電壓和恒定電流模式輸出保持時(shí)間減少開(kāi)關(guān)損耗
2018-08-10 08:38:17

具有通用輸入和雙路輸出的初級(jí)側(cè)穩(wěn)壓反激

/0.5A。此設(shè)計(jì)可最大限度減少 FET 開(kāi)關(guān)損耗以提供高效率。UCC28740 的電流調(diào)節(jié)特性可提供精確的電流限制保護(hù)。特性通用輸入 85 -264VAC雙路輸出輸出恒定電壓和恒定電流模式輸出保持時(shí)間減少開(kāi)關(guān)損耗`
2015-03-16 14:50:16

內(nèi)置SiC SBD的Hybrid IGBT 在FRD+I(xiàn)GBT的車(chē)載充電器案例 開(kāi)關(guān)損耗降低67%

內(nèi)置SiC肖特基勢(shì)壘二極管的IGBT:RGWxx65C系列內(nèi)置SiC SBD的Hybrid IGBT在FRD+I(xiàn)GBT的車(chē)載充電器案例開(kāi)關(guān)損耗降低67%關(guān)鍵詞* ? SiC肖特基勢(shì)壘二極管(SiC
2022-07-27 10:27:04

準(zhǔn)確測(cè)量開(kāi)關(guān)損耗的幾個(gè)方式

一個(gè)高質(zhì)量的開(kāi)關(guān)電源效率高達(dá)95%,而開(kāi)關(guān)電源的損耗大部分來(lái)自開(kāi)關(guān)器件(MOSFET和二極管),所以正確的測(cè)量開(kāi)關(guān)器件的損耗,對(duì)于效率分析是非常關(guān)鍵的。那我們?cè)撊绾螠?zhǔn)確測(cè)量開(kāi)關(guān)損耗呢?一、開(kāi)關(guān)損耗
2021-11-18 07:00:00

功率MOSFET的開(kāi)關(guān)損耗:關(guān)斷損耗

保持電源電壓VDD不變,當(dāng)VGS電壓減小到0時(shí),這個(gè)階段結(jié)束,VGS電壓的變化公式和模式1相同。在關(guān)斷過(guò)程,t6~t7和t7~t8二個(gè)階段電流和電壓產(chǎn)生重疊交越區(qū),因此產(chǎn)生開(kāi)關(guān)損耗。關(guān)斷損耗可以用下面
2017-03-06 15:19:01

功率MOSFET的開(kāi)關(guān)損耗:開(kāi)通損耗

的開(kāi)通過(guò)程,跨越線性區(qū)是產(chǎn)生開(kāi)關(guān)損耗的最根本的原因。這表明:米勒平臺(tái)時(shí)間在開(kāi)通損耗占主導(dǎo)地位,這也是為什么在選擇功率MOSFET的時(shí)候,如果關(guān)注開(kāi)關(guān)損耗,那么就應(yīng)該關(guān)注Crss或QGD,而不僅僅是
2017-02-24 15:05:54

反激式拓?fù)渲?b class="flag-6" style="color: red">最大限度降低空載待機(jī)功耗的參考設(shè)計(jì)

描述 此項(xiàng) 25W 的設(shè)計(jì)在反激式拓?fù)渲惺褂?UCC28740 來(lái)最大限度降低空載待機(jī)功耗,并使用 UCC24636同步整流控制器來(lái)最大限度減少功率 MOSFET 體二極管傳導(dǎo)時(shí)間。此設(shè)計(jì)還使用來(lái)
2022-09-23 06:11:58

在功率二極管損耗最小的SiC-SBD

SiC-SBD,藍(lán)色是第二代,可確認(rèn)VF的降低。SiC-SBD因高速trr而使開(kāi)關(guān)損耗降低,加之VF的改善,在功率二極管可以說(shuō)是損耗最小的二極管。促進(jìn)電源系統(tǒng)應(yīng)用的效率提高與小型化前面已經(jīng)介紹了
2018-12-04 10:26:52

如何最大限度減小電源設(shè)計(jì)輸出電容的數(shù)量和尺寸

電源輸出電容一般是100 nF至100 μF的陶瓷電容,它們耗費(fèi)資金,占用空間,而且,在遇到交付瓶頸的時(shí)候還會(huì)難以獲得。所以,如何最大限度減小輸出電容的數(shù)量和尺寸,這個(gè)問(wèn)題反復(fù)被提及。輸出電容造成
2022-06-14 10:19:20

如何最大限度減小電源設(shè)計(jì)輸出電容的數(shù)量和尺寸?

電源輸出電容一般是100 nF至100 μF的陶瓷電容,它們耗費(fèi)資金,占用空間,而且,在遇到交付瓶頸的時(shí)候還會(huì)難以獲得。所以,如何最大限度減小輸出電容的數(shù)量和尺寸,這個(gè)問(wèn)題反復(fù)被提及。 輸出電容造成
2022-03-21 14:42:45

如何最大限度減少DUT上的電流負(fù)載?

在測(cè)量電源噪聲我們會(huì)面臨各種挑戰(zhàn),包括RF干擾和信噪比(SNR),接下來(lái)我們來(lái)看如何在測(cè)量實(shí)現(xiàn)高帶寬,同時(shí)最大限度減少DUT上的電流負(fù)載?鑒于DUT是電源軌,我們不希望從它汲取太多電流。但是
2021-12-30 06:19:45

如何最大限度提高Σ-Δ ADC驅(qū)動(dòng)器的性能

最大限度提高Σ-Δ ADC驅(qū)動(dòng)器的性能
2021-01-06 07:05:10

如何最大限度的去實(shí)現(xiàn)LTE潛力?

如何最大限度的去實(shí)現(xiàn)LTE潛力?
2021-05-25 06:12:07

如何更加深入理解MOSFET開(kāi)關(guān)損耗

如何更加深入理解MOSFET開(kāi)關(guān)損耗?Coss產(chǎn)生開(kāi)關(guān)損耗與對(duì)開(kāi)關(guān)過(guò)程有什么影響?
2021-04-07 06:01:07

布局電源板以最大限度地降低EMI

布局電源板以最大限度地降低EMI:第3部分
2019-08-16 06:13:31

布局電源板以最大限度地降低EMI:第1部分

布局電源板以最大限度地降低EMI:第1部分
2019-09-05 15:36:07

布局電源板以最大限度地降低EMI:第2部分

布局電源板以最大限度地降低EMI:第2部分
2019-09-06 08:49:33

搭載SiC-MOSFET和SiC-SBD的功率模塊

電流和FRD的恢復(fù)電流引起的較大的開(kāi)關(guān)損耗,通過(guò)改用SiC功率模塊可以明顯減少,因此具有以下效果:開(kāi)關(guān)損耗的降低,可以帶來(lái)電源效率的改善和散熱部件的簡(jiǎn)化(例:散熱片的小型化,水冷/強(qiáng)制風(fēng)冷的自然風(fēng)冷化
2019-03-12 03:43:18

數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)最大的挑戰(zhàn)是最大限度減少噪聲影響

  許多高速數(shù)據(jù)采集應(yīng)用,如激光雷達(dá)或光纖測(cè)試等,都需要從嘈雜的環(huán)境采集小的重復(fù)信號(hào),因此對(duì)于數(shù)據(jù)采集系統(tǒng)的設(shè)計(jì)來(lái)說(shuō),最大的挑戰(zhàn)就是如何最大限度減少噪聲的影響。利用信號(hào)平均技術(shù),可以讓您的測(cè)量
2019-07-03 07:01:20

用于并行采樣的EVADC同步轉(zhuǎn)換,如何在最大化采樣率的同時(shí)最大限度減少抖動(dòng)?

在我的應(yīng)用程序,HSPDM 觸發(fā) EVADC 同時(shí)對(duì)兩個(gè)通道進(jìn)行采樣。 我應(yīng)該如何配置 EVADC 以最大限度減少采樣抖動(dòng)并最大限度地提高采樣率? 在用戶手冊(cè),它提到 SSE=0,USC=0
2024-01-18 07:59:23

直流/直流穩(wěn)壓器部件的開(kāi)關(guān)損耗

歡迎回到直流/直流轉(zhuǎn)換器數(shù)據(jù)表系列。鑒于在上一篇文章我介紹了系統(tǒng)效率方面的內(nèi)容,在本文中,我將討論直流/直流穩(wěn)壓器部件的開(kāi)關(guān)損耗,從第1部分的圖3(此處為圖1)開(kāi)始:VDS和ID曲線隨時(shí)間變化
2018-08-30 15:47:38

碳化硅SiC技術(shù)導(dǎo)入應(yīng)用的最大痛點(diǎn)

了。  固有優(yōu)勢(shì)加上最新進(jìn)展  碳化硅的固有優(yōu)勢(shì)有很多,如高臨界擊穿電壓、高溫操作、具有優(yōu)良的導(dǎo)通電阻/片芯面積和開(kāi)關(guān)損耗、快速開(kāi)關(guān)等。最近,UnitedSiC采用常關(guān)型共源共柵的第三代SiC-FET器件已經(jīng)
2023-02-27 14:28:47

討論直流/直流穩(wěn)壓器部件的開(kāi)關(guān)損耗

在本文中,我將討論直流/直流穩(wěn)壓器部件的開(kāi)關(guān)損耗,從第1部分的圖3(此處為圖1)開(kāi)始:VDS和ID曲線隨時(shí)間變化的圖像。圖1:開(kāi)關(guān)損耗讓我們先來(lái)看看在集成高側(cè)MOSFET開(kāi)關(guān)損耗。在每個(gè)開(kāi)關(guān)
2018-06-05 09:39:43

請(qǐng)教大家,開(kāi)關(guān)電源中所說(shuō)的“交流開(kāi)關(guān)損耗”是什么?

今天開(kāi)始看電源界神作《開(kāi)關(guān)電源設(shè)計(jì)》(第3版),發(fā)現(xiàn)第9頁(yè)有個(gè)名詞,叫“交流開(kāi)關(guān)損耗”,不明白是什么意思,有沒(méi)有哪位大蝦知道它的意思???謝謝了!!
2013-05-28 16:29:18

通過(guò)驅(qū)動(dòng)器源極引腳將 開(kāi)關(guān)損耗降低約35%

了大幅改善。這里有導(dǎo)通和關(guān)斷相關(guān)的開(kāi)關(guān)損耗比較數(shù)據(jù)。在導(dǎo)通數(shù)據(jù),原本2,742μJ的開(kāi)關(guān)損耗變?yōu)?,690μJ,損耗減少了約38%。在關(guān)斷數(shù)據(jù)也從2,039μJ降至1,462μJ,損耗減少了約30
2020-07-01 13:52:06

降低碳化硅牽引逆變器的功率損耗和散熱

SiC FET 時(shí)的比較隔離式柵極驅(qū)動(dòng)器的功率損耗貢獻(xiàn)柵極驅(qū)動(dòng)器-米勒平臺(tái)比較還與柵極驅(qū)動(dòng)器開(kāi)關(guān)損耗有關(guān),如圖4所示。在此比較,驅(qū)動(dòng)器開(kāi)關(guān)損耗差高達(dá)0.6 W。這些損耗會(huì)導(dǎo)致逆變器的總功率損耗
2022-11-02 12:02:05

降壓穩(wěn)壓器電路中影響EMI性能和開(kāi)關(guān)損耗的感性和容性寄生元素

噪聲的傳導(dǎo)回路面積較大,進(jìn)一步推動(dòng)輻射發(fā)射的產(chǎn)生。在第 3 部分,我將全面介紹降壓穩(wěn)壓器電路中影響 EMI 性能和開(kāi)關(guān)損耗的感性和容性寄生元素。通過(guò)了解相關(guān)電路寄生效應(yīng)的影響程度,可以采取適當(dāng)?shù)拇胧?/div>
2020-11-03 07:54:52

降壓穩(wěn)壓器電路中影響EMI性能和開(kāi)關(guān)損耗的感性和容性寄生元素

在第 3 部分,我將全面介紹降壓穩(wěn)壓器電路中影響 EMI 性能和開(kāi)關(guān)損耗的感性和容性寄生元素。通過(guò)了解相關(guān)電路寄生效應(yīng)的影響程度,可以采取適當(dāng)?shù)拇胧⒂绊懡抵磷畹筒?b class="flag-6" style="color: red">減少總體 EMI 信號(hào)。一般來(lái)說(shuō)
2022-11-09 07:38:45

集成高側(cè)MOSFET開(kāi)關(guān)損耗分析

圖1:開(kāi)關(guān)損耗讓我們先來(lái)看看在集成高側(cè)MOSFET開(kāi)關(guān)損耗。在每個(gè)開(kāi)關(guān)周期開(kāi)始時(shí),驅(qū)動(dòng)器開(kāi)始向集成MOSFET的柵極供應(yīng)電流。從第1部分,您了解到MOSFET在其終端具有寄生電容。在首個(gè)時(shí)段(圖
2022-11-16 08:00:15

最大限度減少組件的變化敏感性的單運(yùn)算放大器濾波器-Mini

最大限度減少組件的
2009-04-25 11:00:05702

最大限度減少組件的變化敏感性的單運(yùn)算放大器濾波器-Mini

最大限度減少組件的
2009-05-05 11:13:30483

最大限度減少組件的變化敏感性的單運(yùn)算放大器濾波器-Mini

最大限度減少組件的
2009-05-07 09:13:49612

在升壓變換器中利用新型MOSFET減少開(kāi)關(guān)損耗

在升壓變換器中利用新型MOSFET減少開(kāi)關(guān)損耗 摘要:升壓變換器通常應(yīng)用在彩色監(jiān)視器中。為提高開(kāi)關(guān)電源的效率,設(shè)計(jì)
2009-07-20 16:03:00564

筆記本最大限度延長(zhǎng)電池的使用壽命

筆記本最大限度延長(zhǎng)電池的使用壽命 本文將討論如何有效地使用電池,以及最大限度地延長(zhǎng)電池的使用壽命。本文將只討論最新的XTRA這幾個(gè)使用了鋰電池的系列,對(duì)于較
2010-04-19 09:20:34851

MOSFET開(kāi)關(guān)損耗分析

為了有效解決金屬-氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管(MOSFET)在通信設(shè)備直流-48 V緩啟動(dòng)應(yīng)用電路中出現(xiàn)的開(kāi)關(guān)損耗失效問(wèn)題,通過(guò)對(duì)MOSFET 柵極電荷、極間電容的闡述和導(dǎo)通過(guò)程的解剖,定位了MOSFET 開(kāi)關(guān)損耗的來(lái)源,進(jìn)而為緩啟動(dòng)電路設(shè)計(jì)優(yōu)化,減少MOSFET的開(kāi)關(guān)損耗提供了技術(shù)依據(jù)。
2016-01-04 14:59:0538

使用示波器測(cè)量電源開(kāi)關(guān)損耗

使用示波器測(cè)量電源開(kāi)關(guān)損耗。
2016-05-05 09:49:380

基于CMM下開(kāi)關(guān)損耗和反激開(kāi)關(guān)損耗分析以及公式計(jì)算

1、CCM 模式開(kāi)關(guān)損耗 CCM 模式與 DCM 模式的開(kāi)關(guān)損耗有所不同。先講解復(fù)雜 CCM 模式,DCM 模式很簡(jiǎn)單了。
2018-01-13 09:28:578163

同步降壓穩(wěn)壓器LT?8642S,可最大限度降低EMI發(fā)射

LT?8642S 同步降壓穩(wěn)壓器采用第二代 Silent Switcher 架構(gòu),最大限度地降低了 EMI 發(fā)射,同時(shí)在高開(kāi)關(guān)頻率下實(shí)現(xiàn)了高效率。這包括集成旁路電容器以優(yōu)化所有內(nèi)部快速電流環(huán)路
2018-07-11 16:38:001463

如何準(zhǔn)確的測(cè)量開(kāi)關(guān)損耗

一個(gè)高質(zhì)量的開(kāi)關(guān)電源效率高達(dá)95%,而開(kāi)關(guān)電源的損耗大部分來(lái)自開(kāi)關(guān)器件(MOSFET和二極管),所以正確的測(cè)量開(kāi)關(guān)器件的損耗,對(duì)于效率分析是非常關(guān)鍵的。那我們?cè)撊绾螠?zhǔn)確測(cè)量開(kāi)關(guān)損耗呢?
2019-06-27 10:22:081926

理想二極管橋控制器最大限度減少整流器發(fā)熱量和電壓損失

理想二極管橋控制器最大限度減少整流器發(fā)熱量和電壓損失
2021-03-19 09:54:083

LTC3555 - 開(kāi)關(guān)模式 USB 電源管理器和三路降壓型穩(wěn)壓器,可實(shí)現(xiàn)更快速的充電并最大限度減少熱量

LTC3555 - 開(kāi)關(guān)模式 USB 電源管理器和三路降壓型穩(wěn)壓器,可實(shí)現(xiàn)更快速的充電并最大限度減少熱量
2021-03-20 20:02:201

LTC3556 - 具開(kāi)關(guān)模式 USB 電源管理器、一個(gè)降壓-升壓型穩(wěn)壓器和兩個(gè)降壓型穩(wěn)壓器的 PMIC 最大限度延長(zhǎng)電池工作時(shí)間和減少熱量

LTC3556 - 具開(kāi)關(guān)模式 USB 電源管理器、一個(gè)降壓-升壓型穩(wěn)壓器和兩個(gè)降壓型穩(wěn)壓器的 PMIC 最大限度延長(zhǎng)電池工作時(shí)間和減少熱量
2021-03-21 08:17:269

功率MOSFET的開(kāi)關(guān)損耗分析

功率MOSFET的開(kāi)關(guān)損耗分析。
2021-04-16 14:17:0248

開(kāi)關(guān)損耗原理分析

一、開(kāi)關(guān)損耗包括開(kāi)通損耗和關(guān)斷損耗兩種。開(kāi)通損耗是指功率管從截止到導(dǎo)通時(shí)所產(chǎn)生的功率損耗;關(guān)斷損耗是指功率管從導(dǎo)通到截止時(shí)所產(chǎn)生的功率損耗。二、開(kāi)關(guān)損耗原理分析:(1)、非理想的開(kāi)關(guān)管在開(kāi)通時(shí),開(kāi)關(guān)
2021-10-22 10:51:0611

使用LTspice估算SiC MOSFET的開(kāi)關(guān)損耗

。此外,今天的開(kāi)關(guān)元件沒(méi)有非常高的運(yùn)行速度,不幸的是,在轉(zhuǎn)換過(guò)程中不可避免地會(huì)損失一些能量(幸運(yùn)的是,隨著新電子元件的出現(xiàn),這種能量越來(lái)越少)。讓我們看看如何使用“LTspice”仿真程序來(lái)確定 SiC MOSFET 的開(kāi)關(guān)損耗率。
2022-08-05 08:05:075942

基于人工智能的軟開(kāi)關(guān)減少損耗以擴(kuò)展電動(dòng)汽車(chē)的續(xù)航里程

在汽車(chē)領(lǐng)域,對(duì)電動(dòng)汽車(chē)效率的研究主要集中在電池自主性以及逆變器和電動(dòng)機(jī)的效率上。嚴(yán)格的汽車(chē)安全和質(zhì)量標(biāo)準(zhǔn)正在引導(dǎo)技術(shù)創(chuàng)新,以最大限度地提高電動(dòng)汽車(chē) (EV) 的效率和自主性,同時(shí)最大限度減少電池
2022-08-09 08:02:021059

智慧家庭系列文章 | 如何最大限度減少智能音箱和智能顯示器的輸入功率保護(hù)

智慧家庭系列文章 | 如何最大限度減少智能音箱和智能顯示器的輸入功率保護(hù)
2022-10-31 08:23:540

一次性按鈕開(kāi)關(guān)幫助最大限度延長(zhǎng)閑置時(shí)間

一次性按鈕開(kāi)關(guān)幫助最大限度延長(zhǎng)閑置時(shí)間
2022-11-04 09:52:060

時(shí)鐘采樣系統(tǒng)最大限度減少抖動(dòng)

時(shí)鐘采樣系統(tǒng)最大限度減少抖動(dòng)
2022-11-04 09:52:120

如何最大限度減少線纜設(shè)計(jì)中的串?dāng)_

如何最大限度減少線纜設(shè)計(jì)中的串?dāng)_
2022-11-07 08:07:261

AN2014_設(shè)計(jì)者如何最大限度使用ST單片機(jī)

AN2014_設(shè)計(jì)者如何最大限度使用ST單片機(jī)
2022-11-21 17:07:410

如何在使用SiC MOSFET時(shí)最大限度地降低EMI開(kāi)關(guān)損耗

碳化硅 (SiC) MOSFET 的快速開(kāi)關(guān)速度、高額定電壓和低導(dǎo)通 RDS(on) 使其對(duì)電源設(shè)計(jì)人員極具吸引力,這些設(shè)計(jì)人員不斷尋找提高效率和功率密度的方法,同時(shí)保持系統(tǒng)簡(jiǎn)單性。
2022-11-23 11:45:131286

如何最大限度地提高電子設(shè)備中能量收集的效率

如何最大限度地提高電子設(shè)備中能量收集的效率
2022-12-30 09:40:14616

開(kāi)關(guān)電源功率MOSFET開(kāi)關(guān)損耗的2個(gè)產(chǎn)生因素

開(kāi)關(guān)過(guò)程中,穿越線性區(qū)(放大區(qū))時(shí),電流和電壓產(chǎn)生交疊,形成開(kāi)關(guān)損耗。其中,米勒電容導(dǎo)致的米勒平臺(tái)時(shí)間,在開(kāi)關(guān)損耗中占主導(dǎo)作用。
2023-01-17 10:21:00978

SiC功率模塊的開(kāi)關(guān)損耗

SiC功率模塊與現(xiàn)有的IGBT模塊相比,具有1)可大大降低開(kāi)關(guān)損耗、2)開(kāi)關(guān)頻率越高總體損耗降低程度越顯著 這兩大優(yōu)勢(shì)。
2023-02-08 13:43:22673

最大限度降低SiC FETEMI開(kāi)關(guān)損耗

對(duì)高效率、高功率密度和系統(tǒng)簡(jiǎn)單性的需求增加,使得碳化硅 (SiCFET 因其快速開(kāi)關(guān)速度、低 R 而成為電源工程師的有吸引力的選擇DS(開(kāi)啟)和高壓額定值。
2023-02-21 09:26:42417

IGBT導(dǎo)通損耗開(kāi)關(guān)損耗

從某個(gè)外企的功率放大器的測(cè)試數(shù)據(jù)上獲得一個(gè)具體的感受:導(dǎo)通損耗60W開(kāi)關(guān)損耗251。大概是1:4.5 下面是英飛凌的一個(gè)例子:可知,六個(gè)管子的總功耗是714W這跟我在項(xiàng)目用用的那個(gè)150A的模塊試驗(yàn)測(cè)試得到的總功耗差不多。 導(dǎo)通損耗開(kāi)關(guān)損耗大概1:2
2023-02-23 09:26:4915

DC/DC評(píng)估篇損耗探討-同步整流降壓轉(zhuǎn)換器的開(kāi)關(guān)損耗

上一篇文章中探討了同步整流降壓轉(zhuǎn)換器的功率開(kāi)關(guān)--輸出端MOSFET的傳導(dǎo)損耗。本文將探討開(kāi)關(guān)節(jié)點(diǎn)產(chǎn)生的開(kāi)關(guān)損耗開(kāi)關(guān)損耗:見(jiàn)文識(shí)意,開(kāi)關(guān)損耗就是開(kāi)關(guān)工作相關(guān)的損耗。在這里使用PSWH這個(gè)符號(hào)來(lái)表示。
2023-02-23 10:40:49623

SiC功率模塊的開(kāi)關(guān)損耗

SiC功率模塊與現(xiàn)有的功率模塊相比具有SiC與生俱來(lái)的優(yōu)異性能。本文將對(duì)開(kāi)關(guān)損耗進(jìn)行介紹,開(kāi)關(guān)損耗也可以說(shuō)是傳統(tǒng)功率模塊所要解決的重大課題。
2023-02-24 11:51:28496

使用直角齒輪電機(jī)最大限度減少機(jī)器占地面積

使用直角齒輪電機(jī)最大限度減少機(jī)器占地面積
2023-03-09 15:16:36865

如何使用高速和高電流柵極驅(qū)動(dòng)器實(shí)現(xiàn)更高的系統(tǒng)效率

的充電。驅(qū)動(dòng)電流能力越高,電容充電或放電的速度就越快。能夠源出和吸收大量電荷可最大限度減少功率損耗和失真。(傳導(dǎo)損耗FET中其他類(lèi)型的開(kāi)關(guān)損耗。傳導(dǎo)損耗由內(nèi)阻或RDS(開(kāi)啟),其中 FET 的 .FET隨著電流的傳導(dǎo)而耗散功率。
2023-04-07 10:23:291234

LTspice可最大限度減少設(shè)計(jì)重新設(shè)計(jì)并加速您的仿真

開(kāi)關(guān)穩(wěn)壓器,使用戶能夠在短短幾分鐘內(nèi)查看大多數(shù)開(kāi)關(guān)穩(wěn)壓器的波形。 ? 精密的圖形用戶界面 LTspice是一種易于理解的電子電路模擬器,它使用戶不僅可以查看數(shù)值數(shù)據(jù),還可以查看模擬結(jié)果的圖形波形。 通過(guò)與LTspice 鏈接最大限度減少設(shè)計(jì)重新設(shè)計(jì)并加速您的仿真 Quadcept允許用戶為
2023-06-26 16:04:18623

MOS管的開(kāi)關(guān)損耗計(jì)算

CCM 模式與 DCM 模式的開(kāi)關(guān)損耗有所不同。先講解復(fù)雜 CCM 模式,DCM 模式很簡(jiǎn)單了。
2023-07-17 16:51:224680

切換以最大限度地利用SAN

電子發(fā)燒友網(wǎng)站提供《切換以最大限度地利用SAN.pdf》資料免費(fèi)下載
2023-09-01 11:23:250

最大限度減少SIC FETs EMI和轉(zhuǎn)換損失

最大限度減少SIC FETs EMI和轉(zhuǎn)換損失
2023-09-27 15:06:15236

最大限度保持系統(tǒng)低噪聲

最大限度保持系統(tǒng)低噪聲
2023-11-27 16:58:00161

使用SiC MOSFET時(shí)如何盡量降低電磁干擾和開(kāi)關(guān)損耗

使用SiC MOSFET時(shí)如何盡量降低電磁干擾和開(kāi)關(guān)損耗
2023-11-23 09:08:34333

如何最大限度減小電源設(shè)計(jì)中輸出電容的數(shù)量和尺寸?

如何最大限度減小電源設(shè)計(jì)中輸出電容的數(shù)量和尺寸?
2023-12-15 09:47:18183

已全部加載完成