chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>可編程邏輯>FPGA和GPU在深度神經(jīng)網(wǎng)絡(luò)方面誰更勝一籌

FPGA和GPU在深度神經(jīng)網(wǎng)絡(luò)方面誰更勝一籌

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦

Oculus Rift與PS VR:誰會更勝一籌

對于用戶來說,究竟Oculus Rift和PlayStation VR誰更勝一籌呢?我們來進(jìn)行一下對比。
2016-03-21 15:12:001110

NVIDIA CUDA深度神經(jīng)網(wǎng)絡(luò)庫實(shí)現(xiàn)高性能GPU加速

NVIDIA CUDA 深度神經(jīng)網(wǎng)絡(luò)庫(cuDNN)是一個(gè) GPU 加速的深度神經(jīng)網(wǎng)絡(luò)基元庫,能夠以高度優(yōu)化的方式實(shí)現(xiàn)標(biāo)準(zhǔn)例程(如前向和反向卷積、池化層、歸一化和激活層)。
2022-07-23 11:04:341292

詳解深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

在如今的網(wǎng)絡(luò)時(shí)代,錯(cuò)綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習(xí)逐漸走進(jìn)人們的視線,通過深度學(xué)習(xí)解決若干問題的案例越來越多。一些傳統(tǒng)的圖像
2024-01-11 10:51:32596

FPGA 超越 GPU,問鼎下深度學(xué)習(xí)主引擎

GPU。除了性能外,FPGA 的強(qiáng)大還源于它們具有適應(yīng)性,通過重用現(xiàn)有的芯片可以輕松實(shí)現(xiàn)更改,從而讓團(tuán)隊(duì)六個(gè)月內(nèi)從想法進(jìn)展到原型(和用18個(gè)月構(gòu)建個(gè) ASIC 相比)?!?.測試中使用的神經(jīng)網(wǎng)絡(luò)機(jī)器
2017-04-27 14:10:12

FPGA深度學(xué)習(xí)應(yīng)用中或?qū)⑷〈?b class="flag-6" style="color: red">GPU

硬件公司供貨的不斷增加,GPU 深度學(xué)習(xí)中的市場需求還催生了大量公共云服務(wù),這些服務(wù)為深度學(xué)習(xí)項(xiàng)目提供強(qiáng)大的 GPU 虛擬機(jī)。 但是顯卡也受硬件和環(huán)境的限制。Larzul 解釋說:“神經(jīng)網(wǎng)絡(luò)訓(xùn)練
2024-03-21 15:19:45

深度神經(jīng)網(wǎng)絡(luò)是什么

多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

神經(jīng)網(wǎng)絡(luò)與SVM的模塊

大家有知道labview中神經(jīng)網(wǎng)絡(luò)和SVM的工具包是哪個(gè)嗎?求分享下,有做這方面的朋友也可以交流下,大家共同進(jìn)步
2017-10-13 11:41:43

神經(jīng)網(wǎng)絡(luò)和反向傳播算法

03_深度學(xué)習(xí)入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

  第1章 概述  1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展  1.2 生物神經(jīng)元  1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成  第2章人工神經(jīng)網(wǎng)絡(luò)基本模型  2.1 MP模型  2.2 感知器模型  2.3 自適應(yīng)線性
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡介

神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索有什么優(yōu)勢?

近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時(shí)代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴(yán)格
2019-09-11 11:52:14

神經(jīng)網(wǎng)絡(luò)解決方案讓自動駕駛成為現(xiàn)實(shí)

及 3x3 的 24 層卷積神經(jīng)網(wǎng)絡(luò), 其性能表現(xiàn)幾乎是個(gè)典型的 GPU/CPU 綜合處理引擎上運(yùn)行的類似 CNN 的三倍,盡管其所需的內(nèi)存帶寬只是后者的五分之且功耗大幅降低。下深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

AI知識科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

,神經(jīng)網(wǎng)絡(luò)之父Hiton始終堅(jiān)持計(jì)算機(jī)能夠像人類樣思考,用直覺而非規(guī)則。盡管這觀點(diǎn)被無數(shù)人質(zhì)疑過無數(shù)次,但隨著數(shù)據(jù)的不斷增長和數(shù)據(jù)挖掘技術(shù)的不斷進(jìn)步,神經(jīng)網(wǎng)絡(luò)開始語音和圖像等方面超越基于邏輯的人
2018-06-05 10:11:50

EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子FPGA中的實(shí)現(xiàn)方法是什么?

FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44

Si整流器與SiC二極管:誰會更勝一籌

Si整流器與SiC二極管:誰會更勝一籌
2021-06-08 06:14:04

Surface Pro與ThinkPad X1 Helix測評相比,哪個(gè)更勝一籌?

Surface Pro上述的缺點(diǎn),而且更具有四種使用形態(tài)(詳細(xì)可以百度了解),隨心所欲,無拘無束。并且待機(jī)時(shí)間最長8小時(shí),平板模式下也能用5.6個(gè)小時(shí)。Surface Pro與ThinkPadX1Helix較勁,ThinkPadX1Helix還是更勝一籌。`
2013-06-20 13:05:16

[X86架構(gòu)和ARM架構(gòu),工業(yè)領(lǐng)域的優(yōu)勢爭霸] X86與ARM更勝...

[X86架構(gòu)和ARM架構(gòu),工業(yè)領(lǐng)域的優(yōu)勢爭霸]X86與ARM更勝一籌? X86作為經(jīng)典的CISC指令集,其架構(gòu)的優(yōu)點(diǎn)在于功能強(qiáng)大,而且通用性、兼容性、與實(shí)用性要強(qiáng)。而哈弗結(jié)構(gòu)的ARM架構(gòu)的優(yōu)點(diǎn)
2014-08-01 10:45:41

labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

【PYNQ-Z2申請】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

探索整個(gè)過程中資源利用的優(yōu)化使整個(gè)過程更加節(jié)能高效預(yù)計(jì)成果:1、PYNQ上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)2、對以往實(shí)現(xiàn)結(jié)構(gòu)進(jìn)行優(yōu)化3、為卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)路硬件上,特別是FPGA實(shí)現(xiàn)提供種優(yōu)化思路和方案
2018-12-19 11:37:22

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

前言前面我們通過notebook,完成了PYNQ-Z2開發(fā)板上編寫并運(yùn)行python程序。我們的最終目的是基于神經(jīng)網(wǎng)絡(luò),完成手寫的數(shù)字識別。在這之前,有必要講神經(jīng)網(wǎng)絡(luò)的基本概念和工作原理。何為
2019-03-03 22:10:19

【PYNQ-Z2試用體驗(yàn)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動駕駛小車 - 項(xiàng)目規(guī)劃

小車運(yùn)動的控制信號,實(shí)現(xiàn)小車自動駕駛。初步實(shí)現(xiàn)方案中,為了快速實(shí)現(xiàn)整體功能,使用軟件神經(jīng)網(wǎng)絡(luò)作為控制器,使用單片機(jī)作為底盤電機(jī)的控制器。進(jìn)步的實(shí)現(xiàn)中,所有數(shù)據(jù)處理和底盤控制全部由Zynq FPGA
2019-03-02 23:10:52

【專輯精選】人工智能之神經(jīng)網(wǎng)絡(luò)教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天個(gè)主題為期,希望對各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

種常用的無監(jiān)督學(xué)習(xí)策略,使用改策略時(shí),網(wǎng)絡(luò)的輸出神經(jīng)元相互競爭,每時(shí)刻只有個(gè)競爭獲勝的神經(jīng)元激活。ART神經(jīng)網(wǎng)絡(luò)由比較層、識別層、識別閾值、重置模塊構(gòu)成。其中比較層負(fù)責(zé)接收輸入樣本,并將其傳遞
2019-07-21 04:30:00

為何現(xiàn)在的串行通信傳輸方式會更勝一籌

為何現(xiàn)在的串行通信傳輸方式會更勝一籌?串行通信要比并行通信的速度更高嗎?
2021-10-15 09:09:36

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識過程而開發(fā)出的種算法。假如我們現(xiàn)在只有些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是個(gè)“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人工智能到底用 GPU?還是用 FPGA?

`我思故我 亮出你的觀點(diǎn)自從類神經(jīng)網(wǎng)絡(luò)算法可以用強(qiáng)大的運(yùn)算能力加以模擬之后,強(qiáng)人工智能才開始出現(xiàn)。即便如此,以目前 CPU 的運(yùn)算能力來講,模擬類神經(jīng)網(wǎng)絡(luò)算法的代價(jià)非常之大,于是有人想到了用
2017-08-23 15:42:16

人臉識別、語音翻譯、無人駕駛...這些高科技都離不開深度神經(jīng)網(wǎng)絡(luò)了!

成熟,更深層且功能更強(qiáng)大的神經(jīng)網(wǎng)絡(luò)不斷地被開發(fā)。并且,各種計(jì)算器件比如 CPU 和 GPU 不斷強(qiáng)化,甚至出現(xiàn)了更高效的器件比如 FPGA,相信未來,這項(xiàng)技術(shù)會帶我們進(jìn)入個(gè)更智能的世界。 本期作者
2018-05-11 11:43:14

什么是深度學(xué)習(xí)?使用FPGA進(jìn)行深度學(xué)習(xí)的好處?

FPGA實(shí)現(xiàn)。易于適應(yīng)新的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)深度學(xué)習(xí)是個(gè)非?;钴S的研究領(lǐng)域,每天都在設(shè)計(jì)新的 DNN。其中許多結(jié)合了現(xiàn)有的標(biāo)準(zhǔn)計(jì)算,但有些需要全新的計(jì)算方法。特別是具有特殊結(jié)構(gòu)的網(wǎng)絡(luò)難以 GPU
2023-02-17 16:56:59

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

深度神經(jīng)網(wǎng)絡(luò)運(yùn)用的方法。AlexNet研發(fā)的時(shí)候,使用的GTX580僅有3GB的顯存,所以創(chuàng)造性的把模型拆解兩張顯卡中,架構(gòu)如下:1.第層是卷積層,針對224x224x3的輸入圖片進(jìn)行卷積操作
2018-05-08 15:57:47

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡(luò)維卷積的處理過程

inference設(shè)備端上做。嵌入式設(shè)備的特點(diǎn)是算力不強(qiáng)、memory小。可以通過對神經(jīng)網(wǎng)絡(luò)做量化來降load和省memory,但有時(shí)可能memory還吃緊,就需要對神經(jīng)網(wǎng)絡(luò)memory使用上做進(jìn)步優(yōu)化
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究及學(xué)習(xí)總結(jié)

深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

network,DBN)[24], 從此拉開了深度學(xué)習(xí)大幕。隨著深度學(xué)習(xí)理論的研究和發(fā)展,研究人員提 出了系列卷積神經(jīng)網(wǎng)絡(luò)模型。為了比較不同模型 的質(zhì)量,收集并整理了文獻(xiàn)中模型分類任務(wù)上的 識別率,如圖 1
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

可分離卷積神經(jīng)網(wǎng)絡(luò) Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識別

更勝一籌。關(guān)鍵詞識別神經(jīng)網(wǎng)絡(luò)管道由于要保持“永遠(yuǎn)在線”,KWS 應(yīng)用的功耗預(yù)算受到很大限制。雖然 KWS 應(yīng)用也可在專用 DSP 或高性能 CPU 上運(yùn)行,但更適合在 Arm Cortex-M 微控制器
2021-07-26 09:46:37

基于FPGA神經(jīng)網(wǎng)絡(luò)的性能評估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)

的激光雷達(dá)物體識別技術(shù)直難以嵌入式平臺上實(shí)時(shí)運(yùn)行。經(jīng)緯恒潤經(jīng)過潛心研發(fā),攻克了深度神經(jīng)網(wǎng)絡(luò)嵌入式平臺部署所面臨的算子定制與加速、量化策略、模型壓縮等難題,率先實(shí)現(xiàn)了高性能激光檢測神經(jīng)網(wǎng)絡(luò)并成功地嵌入式平臺(德州儀TI TDA4系列)上完成部署。系統(tǒng)功能目前該系統(tǒng):?支持接入禾賽Pandar 40和
2021-12-21 07:59:18

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)及其嵌入式平臺部署

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識別系統(tǒng)及其嵌入式平臺部署
2021-01-04 06:26:23

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于Cortex-M處理器的高精度關(guān)鍵詞識別實(shí)現(xiàn)

更勝一籌。關(guān)鍵詞識別神經(jīng)網(wǎng)絡(luò)管道由于要保持“永遠(yuǎn)在線”,KWS 應(yīng)用的功耗預(yù)算受到很大限制。雖然 KWS 應(yīng)用也可在專用 DSP 或高性能 CPU 上運(yùn)行,但更適合在 Arm Cortex-M 微控制器
2019-07-23 06:59:07

基于i.MX 8的物體識別神經(jīng)網(wǎng)絡(luò)

i.MX 8開發(fā)工具從相機(jī)獲取數(shù)據(jù)并使用個(gè)GPU并應(yīng)用圖像分割算法。然后將該信息饋送到專用于識別交通標(biāo)志的神經(jīng)網(wǎng)絡(luò)推理引擎的另GPU。
2019-05-29 10:50:46

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是深度神經(jīng)網(wǎng)絡(luò),處理大規(guī)模圖像識別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對 FPGA 上實(shí)現(xiàn) CNN 做個(gè)可行性研究
2019-06-19 07:24:41

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)

如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何用ARM和FPGA搭建神經(jīng)網(wǎng)絡(luò)處理器通信方案?

某人工神經(jīng)網(wǎng)絡(luò)FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2021-05-21 06:35:27

如何移植個(gè)CNN神經(jīng)網(wǎng)絡(luò)FPGA中?

訓(xùn)練個(gè)神經(jīng)網(wǎng)絡(luò)并移植到Lattice FPGA上,通常需要開發(fā)人員既要懂軟件又要懂?dāng)?shù)字電路設(shè)計(jì),是個(gè)不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎(chǔ)上做
2020-11-26 07:46:03

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當(dāng)前的研究熱點(diǎn)之。人腦接受視覺感官傳來的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30

如何進(jìn)行高效的時(shí)序圖神經(jīng)網(wǎng)絡(luò)的訓(xùn)練

現(xiàn)有的圖數(shù)據(jù)規(guī)模極大,導(dǎo)致時(shí)序圖神經(jīng)網(wǎng)絡(luò)的訓(xùn)練需要格外長的時(shí)間,因此使用多GPU進(jìn)行訓(xùn)練變得成為尤為重要,如何有效地將多GPU用于時(shí)序圖神經(jīng)網(wǎng)絡(luò)訓(xùn)練成為個(gè)非常重要的研究議題。本文提供了兩種方式來
2022-09-28 10:37:20

射頻技術(shù)和射頻標(biāo)識對比分析更勝一籌

都說射頻技術(shù)什么的,還有種叫做射頻標(biāo)識?這兩者有什么不同,兩者之間有什么聯(lián)系呢,更勝一籌呢?射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率,頻率范圍從
2020-10-30 07:53:01

怎么解決人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題

本文提出了個(gè)基于FPGA 的信息處理的實(shí)例:個(gè)簡單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計(jì),并考慮了模塊間數(shù)據(jù)傳輸信號同 步的問題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題。
2021-05-06 07:22:07

怎么設(shè)計(jì)ARM與神經(jīng)網(wǎng)絡(luò)處理器的通信方案?

FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20

有人做過神經(jīng)網(wǎng)絡(luò)FPGA上的實(shí)現(xiàn)嗎?

例如BP神經(jīng)網(wǎng)絡(luò)
2018-03-07 19:44:24

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個(gè)控制方法可以嗎?有誰會神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

生物識別技術(shù)有哪幾種?到底哪種會更勝一籌呢?

生物識別技術(shù)是什么?生物識別技術(shù)有哪幾種?到底哪種生物識別技術(shù)更勝一籌呢?
2021-06-28 08:25:37

FPGA去實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)

1、加速神經(jīng)網(wǎng)絡(luò)的必備開源項(xiàng)目  到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個(gè)問題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有
2022-10-24 16:10:50

離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)是什么

2018年全球第三大風(fēng)力發(fā)電機(jī)制造商論文下載地址:https://arxiv.org/pdf/1902.05625v1.pdf論文代碼地址:https://github.com/BinhangYuan/WaveletFCNN需要簡單儲備的知識離散小波轉(zhuǎn)換(DWT)深度神經(jīng)網(wǎng)絡(luò)回顧離散小波變
2021-07-12 07:38:36

脈沖耦合神經(jīng)網(wǎng)絡(luò)FPGA上的實(shí)現(xiàn)誰會?

脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)FPGA上的實(shí)現(xiàn),實(shí)現(xiàn)數(shù)據(jù)分類功能,有報(bào)酬。QQ470345140.
2013-08-25 09:57:14

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺實(shí)踐
2020-06-14 22:21:12

請問fpga加速神經(jīng)網(wǎng)絡(luò)為什么要用arm核呢

請問fpga加速神經(jīng)網(wǎng)絡(luò)為什么要用arm核呢?用其他的不行嗎
2022-07-25 14:37:58

請問神經(jīng)網(wǎng)絡(luò)電機(jī)控制方面的硬件實(shí)現(xiàn)

急急急?。。”救诵“?,電機(jī)控制和神經(jīng)網(wǎng)絡(luò)都是新手,想請教下大神們,有了解神經(jīng)網(wǎng)絡(luò)電機(jī)控制方面的應(yīng)用嗎?有個(gè)導(dǎo)師給我分配任務(wù),讓我查下相關(guān)領(lǐng)域的最新產(chǎn)品和技術(shù),就是基于神經(jīng)網(wǎng)絡(luò)的電機(jī)控制芯片有
2018-08-15 20:35:04

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

視覺任務(wù)中,并取得了巨大成功。然而,由于存儲空間和功耗的限制,神經(jīng)網(wǎng)絡(luò)模型嵌入式設(shè)備上的存儲與計(jì)算仍然是個(gè)巨大的挑戰(zhàn)。前面幾篇介紹了如何在嵌入式AI芯片上部署神經(jīng)網(wǎng)絡(luò):【嵌入式AI開發(fā)】篇五|實(shí)戰(zhàn)篇:STM32cubeIDE上部署神經(jīng)網(wǎng)絡(luò)之pytorch搭建指紋識別模型.onnx...
2021-12-14 07:35:25

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

最高的精度。由此表明非局部模塊可以作為種比較通用的基本組件,設(shè)計(jì)深度神經(jīng)網(wǎng)絡(luò)時(shí)使用。實(shí)驗(yàn)及結(jié)果在這節(jié)我們簡單介紹論文中描述的實(shí)驗(yàn)及結(jié)果。 視頻的基線模型是 ResNet-50 C2D。三維輸出映射
2018-11-12 14:52:50

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義
2017-07-20 08:58:240

NVIDIA深度神經(jīng)網(wǎng)絡(luò)加速庫cuDNN軟件安裝教程

計(jì)基于GPU的加速庫 。cuDNN為深度神經(jīng)網(wǎng)絡(luò)中的標(biāo)準(zhǔn)流程提供了高度優(yōu)化的實(shí)現(xiàn)方式,例如convolution、pooling、normalization以及activation layers的前向以及后向過程。 cuDNN只是NVIDIA深度神經(jīng)網(wǎng)絡(luò)軟件開發(fā)包中的其中一種加速庫。
2017-12-08 10:40:022094

基于虛擬化的多GPU深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練框架

針對深度神經(jīng)網(wǎng)絡(luò)在分布式多機(jī)多GPU上的加速訓(xùn)練問題,提出一種基于虛擬化的遠(yuǎn)程多GPU調(diào)用的實(shí)現(xiàn)方法。利用遠(yuǎn)程GPU調(diào)用部署的分布式GPU集群改進(jìn)傳統(tǒng)一對一的虛擬化技術(shù),同時(shí)改變深度神經(jīng)網(wǎng)絡(luò)在分布式
2018-03-29 16:45:250

微軟、谷歌、英特爾都發(fā)力AI,3巨頭誰更勝一籌?

這個(gè)五月科技界巨頭微軟、谷歌、英特爾先后舉辦開發(fā)者大會,這三次大會最大的共同點(diǎn)就是AI,都是他們大力發(fā)展的領(lǐng)域,那么三巨頭誰更勝一籌呢?
2018-05-28 14:23:581778

【人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)】為什么神經(jīng)網(wǎng)絡(luò)選擇了“深度”?

由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會覺得兩者沒有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01556

MelNet 捕捉“高層結(jié)構(gòu)”更勝一籌

在捕捉“高層結(jié)構(gòu)”方面更勝一籌——說話者的聲音中包含了微妙的一致性,而這幾乎無法用文字描述,但是人的耳朵很好地辨別出來。
2019-07-18 15:13:042949

面向低功耗AI芯片上的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)介紹

這篇文章為大家介紹了一下面向低功耗AI芯片上的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì),隨著這幾年神經(jīng)網(wǎng)絡(luò)和硬件(CPU,GPU,FPGA,ASIC)的迅猛發(fā)展,深度學(xué)習(xí)在包...
2020-12-14 23:40:08536

基于深度神經(jīng)網(wǎng)絡(luò)的文本分類分析

  隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,許多研究者嘗試?yán)?b class="flag-6" style="color: red">深度學(xué)習(xí)來解決文本分類問題,特別是在卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)方面,出現(xiàn)了許多新穎且有效的分類方法。對基于深度神經(jīng)網(wǎng)絡(luò)的文本分類問題進(jìn)行分析,介紹
2021-03-10 16:56:5636

NVIDIA GPU加快深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練和推斷

深度學(xué)習(xí)是推動當(dāng)前人工智能大趨勢的關(guān)鍵技術(shù)。在 MATLAB 中可以實(shí)現(xiàn)深度學(xué)習(xí)的數(shù)據(jù)準(zhǔn)備、網(wǎng)絡(luò)設(shè)計(jì)、訓(xùn)練和部署全流程開發(fā)和應(yīng)用。聯(lián)合高性能 NVIDIA GPU 加快深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練和推斷。
2022-02-18 13:31:441714

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)?

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)。
2023-02-23 09:14:442252

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01549

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類或語音識別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19946

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361860

淺析深度神經(jīng)網(wǎng)絡(luò)壓縮與加速技術(shù)

深度神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的一種框架,它是一種具備至少一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類似
2023-10-11 09:14:33363

已全部加載完成