這是用矩陣因式分解來(lái)計(jì)算線性方程組的最小二乘解的根本方法。它來(lái)自 numpy 包中的線性代數(shù)模塊。通過求解一個(gè) x 向量(它將|| b—a x ||2的歐幾里得 2-范數(shù)最小化),它可以解方程 ax=b。
該方程可能會(huì)欠定、確定或超定(即,a 中線性獨(dú)立的行少于、等于或大于其線性獨(dú)立的列數(shù))。如果 a 是既是一個(gè)方陣也是一個(gè)滿秩矩陣,那么向量 x(如果沒有舍入誤差)正是方程的解。
借助這個(gè)方法,你既可以進(jìn)行簡(jiǎn)單變量回歸又可以進(jìn)行多變量回歸。你可以返回計(jì)算的系數(shù)與殘差。一個(gè)小竅門是,在調(diào)用這個(gè)函數(shù)之前,你必須要在 x 數(shù)據(jù)上附加一列 1,才能計(jì)算截距項(xiàng)。結(jié)果顯示,這是處理線性回歸問題最快速的方法之一。
詳細(xì)描述參考:https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq
方法 5: Statsmodels.OLS ( )
statsmodel 是一個(gè)很不錯(cuò)的 Python 包,它為人們提供了各種類與函數(shù),用于進(jìn)行很多不同統(tǒng)計(jì)模型的估計(jì)、統(tǒng)計(jì)試驗(yàn),以及統(tǒng)計(jì)數(shù)據(jù)研究。每個(gè)估計(jì)器會(huì)有一個(gè)收集了大量統(tǒng)計(jì)數(shù)據(jù)結(jié)果的列表。其中會(huì)對(duì)結(jié)果用已有的統(tǒng)計(jì)包進(jìn)行對(duì)比試驗(yàn),以保證準(zhǔn)確性。
對(duì)于線性回歸,人們可以從這個(gè)包調(diào)用 OLS 或者是 Ordinary least squares 函數(shù)來(lái)得出估計(jì)過程的最終統(tǒng)計(jì)數(shù)據(jù)。
需要記住的一個(gè)小竅門是,你必須要手動(dòng)為數(shù)據(jù) x 添加一個(gè)常數(shù),以用于計(jì)算截距。否則,只會(huì)默認(rèn)輸出回歸系數(shù)。下方表格匯總了 OLS 模型全部的結(jié)果。它和任何函數(shù)統(tǒng)計(jì)語(yǔ)言(如 R 和 Julia)一樣豐富。

詳細(xì)描述參考:
方法 6、7:使用矩陣求逆方法的解析解
對(duì)于一個(gè)良態(tài)(well-conditioned)線性回歸問題(至少是對(duì)于數(shù)據(jù)點(diǎn)、特征),回歸系數(shù)的計(jì)算存在一個(gè)封閉型的矩陣解(它保證了最小二乘的最小化)。它由下面方程給出:
在這里,我們有兩個(gè)選擇:
方法 6:使用簡(jiǎn)單矩陣求逆乘法。
方法 7:首先計(jì)算數(shù)據(jù) x 的廣義 Moore-Penrose 偽逆矩陣,然后將結(jié)果與 y 進(jìn)行點(diǎn)積。由于這里第二個(gè)步驟涉及到奇異值分解(SVD),所以它在處理非良態(tài)數(shù)據(jù)集的時(shí)候雖然速度慢,但是結(jié)果不錯(cuò)。(參考:開發(fā)者必讀:計(jì)算機(jī)科學(xué)中的線性代數(shù))
詳細(xì)描述參考:https://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29
方法 8: sklearn.linear_model.LinearRegression( )
這個(gè)方法經(jīng)常被大部分機(jī)器學(xué)習(xí)工程師與數(shù)據(jù)科學(xué)家使用。然而,對(duì)于真實(shí)世界的問題,它的使用范圍可能沒那么廣,我們可以用交叉驗(yàn)證與正則化算法比如 Lasso 回歸和 Ridge 回歸來(lái)代替它。但是要知道,那些高級(jí)函數(shù)的本質(zhì)核心還是從屬于這個(gè)模型。
詳細(xì)描述參考:
以上方法的速度與時(shí)間復(fù)雜度測(cè)量
作為一個(gè)數(shù)據(jù)科學(xué)家,他的工作經(jīng)常要求他又快又精確地完成數(shù)據(jù)建模。如果使用的方法本來(lái)就很慢,那么在面對(duì)大型數(shù)據(jù)集的時(shí)候便會(huì)出現(xiàn)執(zhí)行的瓶頸問題。
一個(gè)判斷算法能力可擴(kuò)展性的好辦法,是用不斷擴(kuò)大的數(shù)據(jù)集來(lái)測(cè)試數(shù)據(jù),然后提取所有試驗(yàn)的執(zhí)行時(shí)間,畫出趨勢(shì)圖。
可以在 GitHub 查看這個(gè)方法的代碼。下方給出了最終的結(jié)果。由于模型的簡(jiǎn)單性,stats.linregress 和簡(jiǎn)單矩陣求逆乘法的速度最快,甚至達(dá)到了 1 千萬(wàn)個(gè)數(shù)據(jù)點(diǎn)。
總結(jié)
作為一個(gè)數(shù)據(jù)科學(xué)家,你必須要經(jīng)常進(jìn)行研究,去發(fā)現(xiàn)多種處理相同的分析或建模任務(wù)的方法,然后針對(duì)不同問題對(duì)癥下藥。
在本文中,我們討論了 8 種進(jìn)行簡(jiǎn)單線性回歸的方法。其中大部分方法都可以延伸到更一般的多變量和多項(xiàng)式回歸問題上。我們沒有列出這些方法的 R2 系數(shù)擬合,因?yàn)樗鼈兌挤浅=咏?1。
對(duì)于(有百萬(wàn)人工生成的數(shù)據(jù)點(diǎn)的)單變量回歸,回歸系數(shù)的估計(jì)結(jié)果非常不錯(cuò)。
這篇文章首要目標(biāo)是討論上述 8 種方法相關(guān)的速度/計(jì)算復(fù)雜度。我們通過在一個(gè)合成的規(guī)模逐漸增大的數(shù)據(jù)集(最大到 1 千萬(wàn)個(gè)樣本)上進(jìn)行實(shí)驗(yàn),我們測(cè)出了每種方法的計(jì)算復(fù)雜度。令人驚訝的是,簡(jiǎn)單矩陣求逆乘法的解析解竟然比常用的 scikit-learn 線性模型要快得多。
電子發(fā)燒友App



















評(píng)論