RF系統(tǒng)抑制源自相鄰信道干擾的能力主要取決于接收機的架構(gòu)。雖然目前可以使用幾種接收機架構(gòu),但是由于在WLAN系統(tǒng)中普遍使用直接轉(zhuǎn)換(DC)與雙通道轉(zhuǎn)換或超外差(super-het)架構(gòu),因此本白皮書只對這兩種架構(gòu)進行分析。
為了在WLAN接收機的設計中融入有效的ACR功能,必須在接收機鏈路中考慮兩個要點。如下所示:
●低噪聲放大器(LNA)與IP3的輸入信號飽和度;
●在系統(tǒng)的信號基帶處理器中模數(shù)轉(zhuǎn)換器(A/D)的當前信號級別。
在802.11系統(tǒng)中,大多數(shù)LNA的輸入信號級別在-20到-30dBm之間達到飽和。如果出現(xiàn)了超過此級別的強輸入信號,LNA將停止提供增益,并且實際上將抑制信號的非線性失真。精心設計的LNA能夠以高達-10至-15dBm的輸入級別進行操作。當輸入信號超過-10至-15dBm時,一些系統(tǒng)能夠繞過LNA。從而使輸入信號可高達+4dBm,但是折衷的結(jié)果是造成較低的接收機靈敏度。
在LNA的RF處理鏈路的另一端將輸入系統(tǒng)的A/D轉(zhuǎn)換器。這些轉(zhuǎn)換器具有有限的動態(tài)范圍。因此,無法過濾出ACI,從而造成數(shù)字噪聲層在接收的信號中占據(jù)主導地位。假設WLAN射頻設計為至少具有20dB的數(shù)字過濾,那么ACI噪聲與802.11信號在A/D上的信號功率應該是相同的(相等功率點)。
?
?
表1顯示了2.4GHz頻帶中干擾源的示例。此表中有效的干擾數(shù)字(第5列)解釋了LNA的飽和點之所以如此重要的原因。
表1中的大多數(shù)干擾源均為窄帶設備,如:無繩電話或藍牙產(chǎn)品等。在很多情況下,該類產(chǎn)品可以在一米之內(nèi)或WLAN客戶端設備中進行操作。即使有傳播損失,這些干擾源仍然可以為位于802.11接收機鏈路一端的LNA提供高達0dBm。
802.11接收機架構(gòu)
?
?
圖4將超外差接收機架構(gòu)與DC接收機架構(gòu)之間的差別進行了對比。此示例假設源自無繩電話的相鄰窄帶強干擾為-15dBm,并且接收的WLAN信號級別的目標是-80dBm。也就是說在干擾與WLAN信號之間的接收功率相差將近65dBm。這種情況很容易發(fā)生,如某用戶可能一邊在與本地WLAN相連的便攜電腦上進行工作,一邊用無繩電話聊天。
圖4顯示了超外差接收機架構(gòu)的過濾設計可以將ACI降低至可接受的級別。在至少具有20dB數(shù)字相鄰信道過濾的條件下,超外差接收機在不增加分組誤差率的情況下每秒能夠接收11兆位(Mbps)CCK或22MbpsPBCC802.11Wi-Fi信號。
如果采用DC架構(gòu),去除了中頻(IF)上的聲表面波(SAW)濾波器,從而導致接收機鏈路中A/D轉(zhuǎn)換器上的干擾信號是40dB,高于可接受的程度。采用A/D上的過采樣與回遞抽取過濾(recursivedecimationfiltering),仍然可以恢復802.11信號。例如,GSM接收機使用DC架構(gòu),并且通過在大約26MHz上過采樣大約300KHz的帶寬GSM信號提供大約80dB的ACR。不幸的是,由于技術的局限性與電池供電產(chǎn)品的低功耗要求,過采樣所采用的信號幾乎百分之百都是像GSM信號這樣的窄帶信號,不可能是像802.11信號那樣的寬帶信號。
下面的圖5顯示了在A/D轉(zhuǎn)換器上強ACI的效果。高級別的ACI導致產(chǎn)生在802.11信道的SIR中占據(jù)主導地位的噪聲層,從而由于造成要處理大氣噪聲與量化而削弱了WLAN信號的強度。
?
?
對于已經(jīng)實施OFDM調(diào)制方案的WLAN來說,從一個頻率接收器到另一個頻率接收器的往返傳輸過程中,接收機鏈路中的快速傅里葉變換(FFT)已經(jīng)有所損耗。從而導致帶外抑制層平均大約為25dB。圖6解釋了每個FFT接收器的SinX/X響應。
接收機
?
?
雖然已經(jīng)超出了本白皮書探討的范圍,但是值得一提的是802.11接收機鏈路中的ACR過濾可以降低功耗,因為基帶處理器中A/D的采樣速率會有所下降。為了滿足防混淆的要求,將加重其他模擬過濾的負擔,而不是以更高的速率進行采樣。在5GHz頻帶所謂的全頻段射頻中,這種防混淆的問題尤為關鍵,因為這些射頻的前端是將近1GHz頻寬的信號。這就意味著為接收機鏈路中的A/D轉(zhuǎn)換器提供數(shù)百兆赫的頻譜。包含在此信號中的可以是高功率脈沖雷達信號,該信號將在接收機鏈路中占據(jù)主導地位。
評論