氮化鎵即將實(shí)現(xiàn)產(chǎn)業(yè)化
近年來,GaN電力半導(dǎo)體的研發(fā)日益活躍。與采用Si電力半導(dǎo)體相比,GaN電力半導(dǎo)體應(yīng)用于逆變器、轉(zhuǎn)換器等的電力轉(zhuǎn)換裝置,可大幅提高效率,并實(shí)現(xiàn)小型化。富士通研究所與古河電氣工業(yè)等組成的企業(yè)集團(tuán)、美國IR公司、日本三墾公司、NEC與NEC電子組成的企業(yè)集團(tuán)以及松下公司均已著手研發(fā)該類產(chǎn)品。
目前,GaN電力半導(dǎo)體研發(fā)的焦點(diǎn)之一是底板的選擇。GaN底板有助于提高GaN電力半導(dǎo)體的電氣特性,但價(jià)格較高。為了控制成本,越來越多的廠商選擇采用Si底板和SiC底板等特殊底板。GaN電力半導(dǎo)體之所以能夠提前進(jìn)入產(chǎn)業(yè)化階段,是因?yàn)樵诮档椭圃斐杀竞透纳铺匦苑矫嫒〉眠M(jìn)展。降低成本的關(guān)鍵在于使用Si底板和SiC底板等比GaN底板價(jià)格便宜的新型底板。在GaN底板上制造GaN電力半導(dǎo)體,雖然能夠獲得很好的電氣性能,但是GaN底板的價(jià)格約為Si底板的100倍。另外,GaN晶圓的直徑只有2英寸,難以降低制造成本。
除Si底板外,還可以采用SiC底板低成本制造GaN電力半導(dǎo)體,可利用的最大直徑為4英寸。日本富士通公司研究顯示,考慮到元件的成品率等因素,采用SiC底板制造GaN電力半導(dǎo)體可能比使用Si底板成本更低。
一般而言,使GaN半導(dǎo)體在Si底板和SiC底板等異種底板上生長結(jié)晶并不容易。因?yàn)樯鲜龅装宓木€膨張系數(shù)及晶格常數(shù)等與GaN不同,容易產(chǎn)生結(jié)晶缺陷。富士通研究所指出,在異種底板和GaN半導(dǎo)體之間設(shè)置緩沖層可以解決這一問題。事實(shí)上,其他公司已用過類似方法,如采用Si底板制造LED產(chǎn)品。
2006年,松下公司宣布成功開發(fā)出采用GaN半導(dǎo)體的晶體管,計(jì)劃用于通用逆變器電路和電源電路等使用大功率開關(guān)的元件。該晶體管的元件面積僅為原有同類產(chǎn)品的1/8,而結(jié)構(gòu)改進(jìn)可令導(dǎo)通電阻降為原有同類產(chǎn)品的1/3左右。2010年,松下公司發(fā)布了在單芯片上集成6個(gè)元件的Si底板產(chǎn)品。與采用其他元件構(gòu)成的逆變器相比,該產(chǎn)品可實(shí)現(xiàn)逆變器小型化,并降低寄生電感。事實(shí)上,寄生電感越小,越有利于實(shí)現(xiàn)高速開關(guān)。與采用硅制IGBT構(gòu)成的逆變器進(jìn)行電力損失對比,在輸出功率為20W時(shí),該產(chǎn)品可使電力損耗減少約42%。
日本礙子公司宣布成功開發(fā)出可將LED光源的發(fā)光效率提高1倍的GaN底板。利用這種新型GaN底板制造的LED元件的內(nèi)部量子效率提高了1倍以上,可使發(fā)光效率達(dá)到現(xiàn)有LED光源的2倍200lm/W。這意味著在耗電量降低50%的同時(shí)大幅減少發(fā)熱量,從而實(shí)現(xiàn)照明器具的長壽命及小型化。此項(xiàng)技術(shù)也可應(yīng)用于混合動力車和電動汽車的電力半導(dǎo)體以及無線通信基站的功率放大器等產(chǎn)品。
與此同時(shí),日本三菱化學(xué)公司計(jì)劃于2012年10月開始大批量生產(chǎn)用于LED的GaN底板。由于具有較高的電能轉(zhuǎn)換率,采用GaN底板的LED燈具的耗電量可比現(xiàn)有產(chǎn)品降低50%~70%。與現(xiàn)有采用藍(lán)寶石底板的同類產(chǎn)品相比,GaN底板雖然具有電力損耗較低等優(yōu)點(diǎn),但是存在制造成本偏高的問題。目前三菱化學(xué)公司已開發(fā)出新的生產(chǎn)工藝流程,計(jì)劃于2015年將GaN底板的制造成本降低為目前的1/10。
未來的氧化鎵器件
近期,日本信息通信研究機(jī)構(gòu)NICT發(fā)布了Ga2O3晶體管研制成功的消息。與SiC和GaN相比,Ga2O3在低成本、高耐壓且低損耗方面顯示出較大的潛力,備受業(yè)界關(guān)注。Ga2O3是金屬鎵的氧化物,也是一種半導(dǎo)體化合物,目前已發(fā)現(xiàn)的結(jié)晶形態(tài)有α、β、γ、δ、ε五種。其中,β結(jié)構(gòu)最為穩(wěn)定,與Ga2O3的結(jié)晶生長及物性相關(guān)的研究工作大多圍繞β結(jié)構(gòu)展開。研究人員用Ga2O3試制了金屬半導(dǎo)體場效應(yīng)晶體管,盡管屬于未形成保護(hù)膜鈍化膜的簡單結(jié)構(gòu),但是樣品已經(jīng)顯示出耐壓高、泄漏電流小的特性。在使用SiC和GaN制造相同結(jié)構(gòu)的元件時(shí),通常難以達(dá)到這些樣品的指標(biāo)。除了材料性能優(yōu)異如帶隙比SiC和GaN大,利用Ga2O3進(jìn)行電力半導(dǎo)體研發(fā)的主要原因是其生產(chǎn)成本較低。
采用β-Ga2O3制作底板時(shí),可使用FZ法及EFG法等溶液生長法,這也是其特點(diǎn)之一。溶液生長法容易制備結(jié)晶缺陷少、尺寸大的單結(jié)晶,可以低成本輕松實(shí)現(xiàn)量產(chǎn)。首先利用FZ法或EFG法制備單結(jié)晶,然后將結(jié)晶切成薄片,以薄片為基礎(chǔ)制造底板。用于制造藍(lán)色LED芯片的藍(lán)寶石底板就是利用EFG法制造的。藍(lán)寶石底板不僅具備價(jià)格便宜、結(jié)晶缺陷少的優(yōu)點(diǎn),而且尺寸較大,可為6~8英寸。而SiC底板的基礎(chǔ)即單結(jié)晶需利用升華法制造,GaN底板的基礎(chǔ)“單結(jié)晶”需利用HVPE法等氣相法制造,在減少結(jié)晶缺陷和大尺寸化方面應(yīng)用難度較大。NICT研究小組已利用FZ法制成晶體管所需的β-Ga2O3底板,只要導(dǎo)入與藍(lán)寶石底板相同的大型制造設(shè)備,有望利用EFG法生產(chǎn)6英寸直徑的底版。
此外,NICT研究小組還試制出元件電阻降低的β-Ga2O3底板LED芯片。該芯片的工作電壓低,能夠減少大電流驅(qū)動時(shí)的發(fā)熱量。該芯片的熱阻很低,樣品的熱阻不到0.1℃/W,僅為同尺寸橫向結(jié)構(gòu)現(xiàn)有產(chǎn)品的1/10~1/100。同時(shí),該芯片的電流分布非常均勻。為了調(diào)查芯片電流分布情況,小組研究了1mm2的LED芯片內(nèi)部的面內(nèi)溫度分布。結(jié)果顯示,即使元件溫度平均上升70℃,芯片內(nèi)部溫差最大只有7℃。由此可見,使用β-Ga2O3底板的LED芯片非常適合大電流用途。NICT研究小組希望在2012年內(nèi)推出產(chǎn)品,將這種底板用于LED產(chǎn)品,朝著產(chǎn)業(yè)化方向進(jìn)發(fā)。
β-Ga2O3不僅可用于電力半導(dǎo)體,而且還可用于LED芯片、各種傳感器元件及攝像元件等,應(yīng)用范圍很廣。其中,使用GaN半導(dǎo)體的LED芯片底板最被看好。值得一提的是,β-Ga2O3適合需要大驅(qū)動電流的高功率LED。GaN基LED芯片被廣泛應(yīng)用于藍(lán)色、紫色等光線波長較短的LED。其中,藍(lán)色LED芯片是白色LED的重要基礎(chǔ)部件。GaN基藍(lán)色LED芯片是在藍(lán)寶石底板上制造的。與現(xiàn)有藍(lán)寶石底板相比,β-Ga2O3底板的性能更加優(yōu)異,紫外光及可見光的透射率均為80%,電阻率約為0.005Ω·cm,具有良好的導(dǎo)電性。通常,底板的透射率越高,越容易將LED芯片發(fā)光層發(fā)出的光提取到外部,從而提高光輸出功率及發(fā)光效率;由于底板具備高導(dǎo)電性,可采用在LED芯片表面和背面分別形成陽極和陰極的垂直結(jié)構(gòu)。
日本田村制作所與日本光波公司開發(fā)出使用氧化鎵底板的GaN類LED元件。與以前使用藍(lán)寶石底板的LED元件相比,該LED元件每單位面積可流過10倍以上的電流,可用于前照燈及投影儀等高亮度產(chǎn)品。另外,氧化鎵底板通過簡單的溶液生長即可形成,是一種可實(shí)現(xiàn)低成本化的技術(shù),還可應(yīng)用于照明領(lǐng)域。
氧化鎵底板具有高導(dǎo)電性,使用該底板的GaN類LED元件可在內(nèi)外設(shè)置電極。田村制作所與光波公司開發(fā)出可大幅削減緩沖層電阻位于氧化鎵底板和GaN類外延層之間的技術(shù),并且通過在氧化鎵底板上形成低電阻n型歐姆接觸電極的技術(shù),用于通過大電流的LED元件。雖然有觀點(diǎn)認(rèn)為氧化鎵底板容易破裂,但是據(jù)稱開發(fā)者已通過調(diào)整氧化鎵底板的面方向解決了這一問題。
2012年1月,NICT和田村制作所宣布開發(fā)出使用Ga2O3單晶底板的晶體管。與已開始用于電力半導(dǎo)體領(lǐng)域的SiC和GaN相比,這一技術(shù)可大幅削減制造成本。該晶體管是一種將具有肖特基結(jié)的金屬用于柵極電極的MESFET。β-Ga2O3的帶隙為4.8~4.9eV,大于SiC的3.3eV和GaN的3.4eV,理論上可以獲得優(yōu)于SiC和GaN的高耐壓性及低損耗性。另外,由于單晶底板制造無需具備高溫高壓等條件且原料利用率較高,以低成本量產(chǎn)單晶底板成為可能。
使用β-Ga2O3的電力半導(dǎo)體的研發(fā)才剛剛起步,還存在諸多問題,而要想實(shí)現(xiàn)產(chǎn)業(yè)化,首先要試制出能夠常閉型工作的晶體管——致力于實(shí)現(xiàn)MOSFET產(chǎn)品的制造。制造MOSFET產(chǎn)品時(shí),柵極絕緣膜需要使用帶隙非常大的Al2O3、SiO2等氧化物。由于同為氧化物,這些氧化物絕緣膜與Ga2O3的界面有望實(shí)現(xiàn)低缺陷密度界面狀密度。NICT和田村制作所表示,力爭在2015年前制造出直徑4英寸的底板和MOSFET,并在2020年前開始作為電力半導(dǎo)體小規(guī)模量產(chǎn)。
驅(qū)動電源和電機(jī)一體化
調(diào)速控制是家電用電機(jī)技術(shù)發(fā)展的重要領(lǐng)域,深刻影響著家用空調(diào)和冰箱制冷壓縮機(jī)、循環(huán)水泵、風(fēng)機(jī)等部件的技術(shù)發(fā)展。這項(xiàng)技術(shù)目前的主流方案是采用電子電路構(gòu)建的調(diào)速驅(qū)動電源通常稱為電源變換器或變頻器,通過改變電機(jī)輸入的電源參數(shù)實(shí)現(xiàn)轉(zhuǎn)速調(diào)節(jié)。該領(lǐng)域近年來的發(fā)展趨勢是將壓縮機(jī)和驅(qū)動電源進(jìn)行一體化設(shè)計(jì),由壓縮機(jī)制造商或集成供應(yīng)商提供集成組件,簡化整機(jī)制造企業(yè)的系統(tǒng)開發(fā)工作。同時(shí),這種做法還可提高整機(jī)性能和運(yùn)行可靠性以及降低成本,客觀上促進(jìn)了高效率制冷壓縮機(jī)的應(yīng)用。目前,部分家用冰箱用變頻壓縮機(jī)或直流調(diào)速壓縮機(jī)就是由壓縮機(jī)制造企業(yè)配套驅(qū)動電源,通常驅(qū)動電源以專用的安裝構(gòu)件靠近壓縮機(jī)安裝,而空調(diào)壓縮機(jī)采用將驅(qū)動電源置于壓縮機(jī)殼體內(nèi)部的方案已初露端倪。
將驅(qū)動電源置于電機(jī)內(nèi)部的方案已有超過20年的產(chǎn)業(yè)化歷史,這類電機(jī)的生產(chǎn)企業(yè)和品種越來越多,產(chǎn)品的高效、可靠以及便于應(yīng)用等優(yōu)點(diǎn)已得到充分驗(yàn)證。2005年3月22日,豐田發(fā)布了獵犬混合動力車HarrierHybrid和機(jī)敏混合動力車KlugerHybrid,二者的空調(diào)系統(tǒng)均采用逆變器一體化電動壓縮機(jī)。該空調(diào)系統(tǒng)利用逆變器將所配充電電池的直流電轉(zhuǎn)換為交流電,然后再利用交流電驅(qū)動內(nèi)置在壓縮機(jī)中的三相電機(jī),再將壓縮機(jī)轉(zhuǎn)速控制在1000~8600rpm的狀態(tài)下工作。除了以三維方式對IGBT控制電路等裝置進(jìn)行配置,空調(diào)逆變器與電機(jī)的一體化設(shè)計(jì)還可在作為逆變器外裝的樹脂部分嵌入一些部件。該逆變器的外型尺寸比同類產(chǎn)品縮小了1/3。空調(diào)逆變器采用與壓縮機(jī)一體化設(shè)計(jì),可以使用空調(diào)制冷劑進(jìn)行冷卻??照{(diào)系統(tǒng)所用逆變器中最需要冷卻的部件是用于交換控制信號以及獲取電機(jī)驅(qū)動功率的“光耦合器PhotoCoupler”。該部件的耐熱性較差,最需要冷卻。
松下公司在2006年10月舉行的電動車輛討論會上也展示了類似的空調(diào)壓縮機(jī),可適用于混合動力車、電動汽車和燃料電池車的空調(diào)系統(tǒng)。因?yàn)榘l(fā)動機(jī)停機(jī)能夠使空調(diào)制冷機(jī)保持運(yùn)轉(zhuǎn)狀態(tài),改善停車時(shí)的舒適性和車輛的運(yùn)行經(jīng)濟(jì)性。傳統(tǒng)的車用空調(diào)壓縮機(jī)是通過皮帶將曲軸的輸出傳達(dá)到帶輪,從而進(jìn)行壓縮制冷。該壓縮機(jī)去掉了帶輪,改為內(nèi)置無刷電機(jī);機(jī)械結(jié)構(gòu)保留了傳統(tǒng)的皮帶傳動型設(shè)計(jì),可靠性不受影響,并采用以低壓低溫側(cè)制冷劑冷卻逆變器的方法。原有的電動空調(diào)壓縮機(jī)與逆變器在結(jié)構(gòu)上是獨(dú)立的,該技術(shù)方案通過縮小逆變器的體積,將逆變器和壓縮機(jī)進(jìn)行一體化設(shè)計(jì),使壓縮機(jī)更加小型化和輕量化。
羅姆公司在2010年的日本高新技術(shù)博覽會CEATEC上展示了使用SiC器件的新型電力電子模塊的工作狀況。該模塊的特點(diǎn)是尺寸小、耐熱性高,并可內(nèi)置于電機(jī)中。展品包括集成多個(gè)溝道型MOSFET或肖特基勢壘二極管SBD的兩種模塊,耐壓均為600V,輸出電流均為450A,并展示了內(nèi)置這兩種模塊的電動汽車驅(qū)動電機(jī)以及電機(jī)驅(qū)動車輪的情景。同時(shí),羅姆公司還展示了配備溝道型MOSFET和SBD的逆變器模塊。該產(chǎn)品耐壓為600V,輸出電流為300A,特點(diǎn)是尺寸小。該模塊的體積約為使用IGBT的逆變器模塊的1/10,在225℃的高溫下也可正常運(yùn)行。不過,上述產(chǎn)品目前仍處于開發(fā)階段,預(yù)計(jì)于2013年實(shí)現(xiàn)產(chǎn)業(yè)化。
雖然家用電器領(lǐng)域已有個(gè)別部件在嘗試驅(qū)動電源內(nèi)置的電機(jī)技術(shù),但是就整個(gè)家用電器行業(yè)而言,該技術(shù)的產(chǎn)業(yè)化尚未列入議事日程。就空調(diào)壓縮機(jī)而言,電動汽車一體化空調(diào)壓縮機(jī)技術(shù)正在向家用空調(diào)壓縮機(jī)領(lǐng)域轉(zhuǎn)移,目前主要的問題是需要時(shí)間。
評論