僅要兼容LTE網(wǎng)絡(luò),還須支持公用免費(fèi)(unlicensed,設(shè)備廠商不需要購(gòu)買許可費(fèi)用)或
毫米波頻段(注:目前
毫米波波段基本免費(fèi),但免費(fèi)波段不等于
毫米波波段)。嚴(yán)格意義的
毫米波頻率為30GHz至300GHz,對(duì)應(yīng)波長(zhǎng)分別為10mm到1mm,
毫米波通信將極大
提高無線數(shù)據(jù)傳輸?shù)乃俾省?/div>
2019-07-11 07:46:45
。預(yù)計(jì)在2017年底前完成各項(xiàng)新型無線接入技術(shù)標(biāo)準(zhǔn)的提案討論,并預(yù)計(jì)在2018年年中完成phase-1涵蓋至30或40 GHz毫米波頻段;2019年年底完成phase-2涵蓋至100 GHz毫米波頻段之第五代移動(dòng)通信標(biāo)準(zhǔn)的制定。
2019-07-10 07:46:56
我們將考察一個(gè)簡(jiǎn)單的大規(guī)模天線陣列示例,借以探討毫米波無線電的最優(yōu)技術(shù)選擇?,F(xiàn)在深入查看毫米波系統(tǒng)無線電部分的框圖,可以看到一個(gè)經(jīng)典超外差結(jié)構(gòu)完成微波信號(hào)到數(shù)字信號(hào)的變換,然后連接到多路射頻信號(hào)處理
2019-06-12 06:55:46
5G毫米波是如何引入的?毫米波有哪些致命弱點(diǎn)?5G的超高下載速率是怎么做到的?5G毫米波是怎么揚(yáng)長(zhǎng)和避短的?
2021-06-17 07:23:56
前端集成在封裝內(nèi),以實(shí)現(xiàn)系統(tǒng)級(jí)的無線通信功能。AiP技術(shù)順應(yīng)了硅基半導(dǎo)體工藝集成度提高的趨勢(shì),同時(shí)兼顧了天線性能、成本及體積。
圖3:5G毫米波天線的覆蓋范圍。
徐晧博士認(rèn)為,毫米波的移動(dòng)
2023-05-05 10:49:47
【摘要】本文首先介紹了全球毫米波頻譜劃分情況,然后通過對(duì)毫米波特性的分析,總結(jié)了毫米波終端將面臨的技術(shù)挑戰(zhàn),著重介紹了終端側(cè)大規(guī)模天線技術(shù)、毫米波射頻前端技術(shù)的研究進(jìn)展,并根據(jù)毫米波終端的特點(diǎn)分析了
2019-07-18 08:04:55
`在移動(dòng)通信發(fā)展的30年間,毫米波一直都是一片未經(jīng)開墾的蠻荒之地,諸如高通、愛立信、華為、中興等通信巨頭的實(shí)驗(yàn)室都對(duì)它持續(xù)地研究,現(xiàn)如今毫米波在生活中的應(yīng)用已越來越多,毫米波雷達(dá)技術(shù)、5G技術(shù)中均有
2020-03-12 14:10:38
天線陣列)的仿真是在系統(tǒng)設(shè)計(jì),測(cè)試和驗(yàn)證階段的一種非常有效的手段。采用這種方式可以大大減少開發(fā)人員設(shè)計(jì)人員受到RF多天線前端開發(fā)和制造的長(zhǎng)周期,高成本的阻礙。Millilabs的5G 通信毫米波通信信道
2018-07-23 10:51:32
60GHz毫米波通信的研發(fā)工作正日益活躍起來(見圖1)。該技術(shù)面向PC、數(shù)字家電等應(yīng)用,能夠?qū)崿F(xiàn)設(shè)備間數(shù)Gbps的超高速無線傳輸。在業(yè)內(nèi)多家廠商的積極推動(dòng)下,毫米波通信今后的應(yīng)用將會(huì)不斷擴(kuò)展
2019-06-14 06:17:03
面前的突出障礙。從另一個(gè)角度也正是因?yàn)殚L(zhǎng)期的積累和采用BiCMOS工藝,確立了英飛凌在LRR遠(yuǎn)距離毫米波雷達(dá)上的優(yōu)勢(shì),包括兼?zhèn)涮綔y(cè)距離遠(yuǎn)和接收靈敏度高等特點(diǎn)。但是正如圖7 所示,LRR在ADAS系統(tǒng)上
2020-06-03 07:00:00
參考設(shè)計(jì)將經(jīng)濟(jì)高效的 SimpleLink ZigBee CC2530 無線 MCU 與 SimpleLink CC2592 范圍擴(kuò)展器搭配使用,使接收器靈敏度提高 2-3 dB 并將總鏈路預(yù)算增加
2018-08-22 07:03:24
1 引言近年來,隨著沖擊波存儲(chǔ)測(cè)試技術(shù)的不斷發(fā)展,無線傳輸技術(shù)廣泛應(yīng)用于沖擊波存儲(chǔ)測(cè)試領(lǐng)域。針對(duì)沖擊波測(cè)試對(duì)無線傳輸系統(tǒng)通信距離的要求,研究了功率放大電路,設(shè)計(jì)出低噪聲放大電路,從而提高無線傳輸系統(tǒng)的接收靈敏度,滿足沖擊波測(cè)試對(duì)無線傳輸距離的要求。
2019-06-21 08:08:48
的一半( 7.5Km ),或者相當(dāng)于發(fā)射端能量減少了 1/4 ,既相當(dāng)于 25mW ,或 14dBm 。 因此在無線網(wǎng)絡(luò)系統(tǒng)中提高接收端的接收靈敏度,相當(dāng)于提高發(fā)射端的發(fā)射能量。802.11b/g
2021-04-16 13:49:42
`想要知道無線模塊的接收靈敏度是用什么儀器測(cè)量的?有的無線模塊為什么有的比無線芯片本身的靈敏度還高?、求高手解答?、`
2012-08-13 10:49:13
天線體積更小、重量更輕。雷達(dá)射頻前端單片微波集成電路(MMIC)用于產(chǎn)生和接收射頻信號(hào),目前主流的芯片是 SiGe 工藝。 不過如富士、德州儀器等公司開發(fā)出了 CMOS 工藝的毫米波射頻芯片,使得
2019-12-16 11:11:22
在 6G 系統(tǒng)中的潛在應(yīng)用;最后,介紹了我們提出的非對(duì)稱毫米波大規(guī)模 MIMO 系統(tǒng)的初步設(shè)想,并對(duì)其優(yōu)缺點(diǎn)進(jìn)行了簡(jiǎn)要分析。總之,毫米波技術(shù)在未來移動(dòng)通信系統(tǒng)中將會(huì)發(fā)揮越來越重要的作用,需持續(xù)推進(jìn)毫米波技術(shù)研究,服務(wù)于未來社會(huì)。
2021-03-08 08:40:30
特性中的每一種。自由空間路徑損失毫米波無線電頻率(RF)通信的一個(gè)局限性是用于兩天線間直接視線通信的自由空間路徑損耗(FSPL)。FSPL 與波長(zhǎng)的平方成反比,由下列公式給出:FSPL = \\left
2022-07-29 22:43:59
時(shí)波束寬度為18度,而94GHz時(shí)波速寬度僅1.8度。因此可以分辨相距更近的小目標(biāo)或者更為清晰地觀察目標(biāo)的細(xì)節(jié)。3)與激光相比,毫米波的傳播受氣候的影響要小得多,可以認(rèn)為具有全天候特性。4)和微波相比
2019-07-03 08:13:34
波束賦形框圖本文將考察一個(gè)簡(jiǎn)單的大規(guī)模天線陣列示例,借以探討毫米波無線電的最優(yōu)技術(shù)選擇?,F(xiàn)在深入查看毫米波系統(tǒng)無線電部分的框圖,我們看到一個(gè)經(jīng)典超外差結(jié)構(gòu)完成微波信號(hào)到數(shù)字信號(hào)的變換, 然后連接到多路
2019-07-11 07:57:45
毫米波的應(yīng)用越來越多,對(duì)于毫米波,大家也有些許了解。5G 毫米波、毫米波雷達(dá)都是我們耳熟能詳?shù)?b class="flag-6" style="color: red">技術(shù),但除此以外,大家對(duì)毫米波還有更多的認(rèn)識(shí)嗎?本文中,小編將對(duì)四路毫米波空間功率合成技術(shù)加以講解,以
2020-11-05 09:43:08
的程度,當(dāng)我們看到這些相控陣天線時(shí),我們不再有機(jī)會(huì)找到連接器,因?yàn)闃O小的元件尺寸使得“連接器”的概念幾何上不切實(shí)際。頻率越高,尺寸越小,我們就越不可能找到與之配合的連接器。這種無連接器接口的發(fā)展是無線(OTA)測(cè)試的核心。這是毫米波頻率的無線電發(fā)展需要額外關(guān)注和注意的另一個(gè)例子。
2018-07-27 16:30:33
毫米波是什么毫米波移動(dòng)化頻譜的另一端:6 GHz以下頻段
2021-01-28 07:08:27
的傳輸線技術(shù)。但由于這幾種PCB平面?zhèn)鬏斁€的結(jié)構(gòu)不同,導(dǎo)致其在信號(hào)傳輸時(shí)的場(chǎng)分布也各不相同,從而在PCB材料選擇、設(shè)計(jì)和應(yīng)用,特別是毫米波電路時(shí)表現(xiàn)出不同的電路性能。本文將以毫米波下通用的PCB平面?zhèn)鬏斁€技術(shù)展開,討論電路材料、設(shè)計(jì)等對(duì)毫米波電路性能的影響,以及如何優(yōu)化。
2019-06-24 06:35:11
很久以來,毫米波組件與技術(shù)一直與輻射測(cè)量和安全的點(diǎn)到點(diǎn)通信有著緊密的聯(lián)系。但隨著產(chǎn)生和檢測(cè)頻率在30GHz以上信號(hào)的方法變得越來越實(shí)用,毫米波組件和子系統(tǒng)的使用正變得越來越廣泛。電磁仿真軟件工具
2019-06-24 08:21:24
隨著移動(dòng)通信的迅猛發(fā)展,低頻段頻譜資源的開發(fā)已經(jīng)非常成熟,剩余的低頻段頻譜資源已經(jīng)不能滿足5G時(shí)代10Gbps的峰值速率需求,因此未來5G系統(tǒng)需要在毫米波頻段上尋找可用的頻譜資源。作為5G關(guān)鍵技術(shù)
2021-01-08 07:49:38
毫米波雷達(dá)在人體傳感器中的應(yīng)用目前的占用及人員跟蹤傳感器一般使用被動(dòng)紅外(PIR)檢測(cè)技術(shù),依靠測(cè)量紅外光的變化以檢測(cè)運(yùn)動(dòng),實(shí)現(xiàn)簡(jiǎn)單,功耗低,但是被動(dòng)紅外(PIR)檢測(cè)技術(shù)檢測(cè)靈敏度低,容易受到各種
2022-01-25 06:00:08
;多普勒頻移大,測(cè)量相對(duì)速度的精度提高。雷達(dá)為利用無線電回波以探測(cè)目標(biāo)方向和距離的一種裝置,利用無線電探向與測(cè)距。毫米波,是工作在毫米波波段,波長(zhǎng)在1~10mm之間的電磁波。毫米波的波長(zhǎng)介于微波和厘米波之間
2021-09-22 16:17:32
隨著車路協(xié)同系統(tǒng)技術(shù)的研究與發(fā)展,感知設(shè)備的可靠性、穩(wěn)定性、高性價(jià)比、可大規(guī)模部署等要求被提出來。而毫米波雷達(dá)正是滿足這一要求的器件。介紹了一種基于智能網(wǎng)聯(lián)平臺(tái)的車路協(xié)同的基本組成與架構(gòu),闡述其在
2020-07-01 14:16:38
來說,毫米波雷達(dá)的技術(shù)主要由大陸、博世、電裝、奧托立夫、Denso、德爾福等傳統(tǒng)零部件巨頭所壟斷,特別是77GHz毫米波雷達(dá),只有博世、大陸、德爾福、電裝、TRW、富士通天、Hitachi等公司掌握。目前
2018-08-04 09:16:48
所謂的毫米波是無線電波中的一段,我們把波長(zhǎng)為1~10毫米的電磁波稱毫米波,它位于微波與遠(yuǎn)紅外波相交疊的波長(zhǎng)范圍,因而兼有兩種波譜的特點(diǎn)。毫米波的理論和技術(shù)分別是微波向高頻的延伸和光波向低頻的發(fā)展。
2019-08-02 08:49:32
毫米波雷達(dá)的特點(diǎn)、優(yōu)點(diǎn)、缺點(diǎn);毫米波雷達(dá)測(cè)距原理,測(cè)速原理,角速度測(cè)量原理;毫米波雷達(dá)系統(tǒng)架構(gòu)。 毫米波雷達(dá):ADAS/自動(dòng)駕駛核心傳感器毫米波的波長(zhǎng)介于厘米波和光波之間, 因此毫米波兼有微波制導(dǎo)
2021-07-30 08:05:28
)等方式?! ∮捎诳蓽y(cè)量多個(gè)目標(biāo)、分辨率較高、信號(hào)處理復(fù)雜度低、成本低廉、技術(shù)成熟,F(xiàn)WCW雷達(dá)成為最常用的車載毫米波雷達(dá),德爾福、電裝、博世等Tier1供應(yīng)商均采用FMCW調(diào)制方式?! MCW雷達(dá)
2019-12-16 11:09:32
的問題就是車載毫米波雷達(dá)頻段劃分。為避免與其他設(shè)備頻段沖突,車載雷達(dá)需要分配專屬頻段,各國(guó)頻段劃分略有不同。2015年日內(nèi)瓦世界無線電通信大會(huì)將77.5-78.0GHz頻段劃分給無線電定位業(yè)務(wù),以支持短距離
2023-04-18 11:42:23
CC3200的接收靈敏度可以更改嗎?如果可以的話,在哪里更改呢?
2016-04-18 11:03:54
測(cè)試方法:測(cè)試方法如圖,因?yàn)镻CB本身輻射會(huì)大幅影響測(cè)試結(jié)果,所以設(shè)備除了需要放置在屏蔽箱中外,還需要有一定物理間隔(推薦分別放在兩個(gè)房間里)。測(cè)試時(shí),通過固定衰減器將鏈路衰減固定到接近目標(biāo)靈敏度
2019-01-14 12:02:08
已經(jīng)是過去的老舊雷達(dá)屏幕了?,F(xiàn)如今,采用TI獨(dú)特毫米波技術(shù)的毫米波傳感器,可以幫助我們看到具有詳細(xì)輪廓的物體并對(duì)其進(jìn)行分類,實(shí)現(xiàn)“眼見為實(shí)”。
2019-07-26 06:29:58
LoRa為美國(guó)Semtech公司推廣的一種基于擴(kuò)頻技術(shù)的超遠(yuǎn)距離無線傳輸方案,其運(yùn)行在433、868、915MHz等免費(fèi)頻段,具有低功耗、組網(wǎng)節(jié)點(diǎn)多、靈敏度高、傳輸距離遠(yuǎn)等特點(diǎn)。 我們知道在通信系統(tǒng)
2020-09-10 16:30:25
還可提高系統(tǒng)的隱蔽性和抗干擾能力。可通過構(gòu)建基于軟件無線電原理的毫米波通用硬件平臺(tái)將其系統(tǒng)化,而基于軟件無線電原理的毫米波硬件平臺(tái),要求系統(tǒng)的各個(gè)組成部分具有可編程、靈活以及小型化的特點(diǎn)。在最大程度
2019-06-19 08:27:35
),做一個(gè)討論。探討略顯神秘的毫米波系統(tǒng)。
什么是毫米波?
無線通信是基于電磁波所進(jìn)行的通信技術(shù)。為了使不同的通信設(shè)備傳輸互不干擾,國(guó)際電信聯(lián)盟等無線電管理機(jī)構(gòu)對(duì)無線頻譜的使用做了劃分,將不同頻率的頻譜資源
2023-05-05 11:22:19
,在接收通路中,采用了4通道相控陣列的方式進(jìn)行設(shè)計(jì) 。
圖:24GHz車載毫米波相控陣?yán)走_(dá)系統(tǒng)
衛(wèi)星通信
衛(wèi)星通信是現(xiàn)在無線通信研究的一大熱點(diǎn),尤其是低軌衛(wèi)星領(lǐng)域,由于其低延時(shí)、大帶寬的特性,可以
2023-05-08 10:54:25
新型的檢測(cè)方式。基于雷達(dá)的生命體征檢測(cè)是不需要接觸人體的,不易受到周圍環(huán)境的影響,而且它的穿透性強(qiáng)。飛睿科技毫米波雷達(dá)在智能家居的人體感應(yīng)運(yùn)用,對(duì)人體靜止?fàn)顟B(tài)感應(yīng)靈敏,其環(huán)境靈活性高,不受溫度、亮度
2021-09-24 16:45:24
背景 毫米波為波長(zhǎng)1mm-10mm,頻率范圍為30GHz-300GHz的電磁波,與6GHz以下的頻段相比,毫米波帶寬更大、空口時(shí)延低且具有靈活彈性空口配置等優(yōu)勢(shì),能夠更好地滿足當(dāng)前快速發(fā)展的無線通信
2021-11-19 08:00:00
。 CMOS技術(shù)改變了毫米波傳感器的設(shè)計(jì),并嵌入更高的智能化和功能性。CMOS技術(shù)已經(jīng)使TI能夠提供高性能、低功率毫米波傳感器產(chǎn)品組合,涵蓋了從高性能雷達(dá)前端到單芯片雷達(dá)的整個(gè)范圍?! ∑渌Y源 ·進(jìn)一步了解
2018-11-09 16:15:36
雙通道 AD/DA轉(zhuǎn)換器 AD9172/AD9208 應(yīng)用于毫米波無線電:從位到毫米波、從毫米波到位
2021-02-19 06:36:03
(DDS)技術(shù),提出毫米波頻率合成器的設(shè)計(jì)方案。進(jìn)行方案系統(tǒng)實(shí)驗(yàn),結(jié)果表明,相位噪聲為-85dBc/Hz@10kHz,提升了整個(gè)毫米波通信系統(tǒng)的性能?!娟P(guān)鍵詞】:毫米波;;頻率合成;;相位噪聲;;頻率
2010-04-22 11:47:22
如何平滑地過渡到下一代無線網(wǎng)絡(luò)等??v觀各種通信技術(shù)和業(yè)務(wù)需求的發(fā)展方向,實(shí)現(xiàn)寬帶化、無線化、個(gè)人化、分組化以及多業(yè)務(wù)網(wǎng)絡(luò)的融合成為全球通信網(wǎng)絡(luò)的發(fā)展目標(biāo)使得寬帶無線信號(hào)和載波頻率向高頻毫米波(如40~60
2019-06-19 07:03:20
關(guān)于接收機(jī)靈敏度[ 問題 ]karen:想做一個(gè)關(guān)于無線功率控制的算法,要用到接收機(jī)靈敏度的概念,我看文獻(xiàn)時(shí)對(duì)這個(gè)概念的理解就是無線接收機(jī)剛好能正確判決的最小功率值。但是在opnet 的無線接收
2009-06-14 18:05:26
關(guān)于怎樣提高無線通信距離,請(qǐng)各位大神都發(fā)表一下看法最近新研發(fā)一款產(chǎn)品,通信距離1Km,還不能滿足設(shè)計(jì)要求,所以關(guān)于怎樣大幅度提高無線通信距離大家有什么好辦法?高增益天線?提高發(fā)射功率?盡量縮短射頻連接線長(zhǎng)度?等等,對(duì)于各種方法大家有嘗試過的嗎?
2017-03-01 08:59:33
其它頻率的更為明顯。
為了利用毫米波來實(shí)現(xiàn)5G網(wǎng)絡(luò),研究人員必須開發(fā)新的技術(shù)、算法和通信協(xié)議,因?yàn)?b class="flag-6" style="color: red">毫米波信道的基本性質(zhì)與當(dāng)前的蜂窩模式截然不同,并且是相對(duì)未知的。建立毫米波原型的重要性再怎么強(qiáng)調(diào)都不
2023-05-05 09:52:51
在毫米波中繼通信設(shè)備中,為提高對(duì)準(zhǔn)精度,縮短對(duì)準(zhǔn)時(shí)間,滿足快速反應(yīng)的要求,并結(jié)合毫米波波瓣窄,方向性強(qiáng)的特點(diǎn),創(chuàng)造性地提出了毫米波天線自動(dòng)對(duì)準(zhǔn)平臺(tái)系統(tǒng)的設(shè)計(jì)方案。在天線對(duì)準(zhǔn)過程中,將復(fù)雜的的空間搜索
2019-06-11 06:24:10
您好,我用CC2430組建的星狀網(wǎng)絡(luò),現(xiàn)在想減小主節(jié)點(diǎn)識(shí)別范圍(子節(jié)點(diǎn)發(fā)送接收指標(biāo)不變),想知道如何合理的降低主節(jié)點(diǎn)接收靈敏度?謝謝!
2018-06-21 02:57:01
如何測(cè)試LoRa的接收靈敏度呢?LoRa傳輸數(shù)據(jù)用加密算法嗎?
2022-01-20 06:34:32
如題,如何設(shè)置zigbee的接收靈敏度?
2016-03-30 15:04:01
靈敏度來保證測(cè)試的精度。當(dāng)頻率到70GHz的時(shí)候,同軸連接器內(nèi)導(dǎo)體的直徑只有0.5mm,該尺寸已經(jīng)接近車床機(jī)械加工能力的極限,連接器上任何的毛刺甚至灰塵都會(huì)影響連接器的在毫米波頻段的匹配性能。相對(duì)于低頻
2017-04-14 11:57:45
本帖最后由 SMART2016 于 2014-11-18 17:45 編輯
招聘毫米波技術(shù)應(yīng)用支持一位QQ 357693872
2014-11-18 17:18:16
較高、信號(hào)處理復(fù)雜度低、成本低廉、技術(shù)成熟等優(yōu)點(diǎn),成為目前最常用的車載毫米波雷達(dá),德爾福(Delphi)、電裝(Denso)、博世(Bosch)等Tier 1供應(yīng)商均采用FMCW調(diào)制方式。以FMCW為
2018-08-03 21:40:13
領(lǐng)域能夠快速檢測(cè)并精確入侵目標(biāo),及時(shí)報(bào)警警戒,是安防領(lǐng)域的重要技術(shù)設(shè)備。隨著芯片集成度越來越高,硬件性能強(qiáng)大,毫米波雷達(dá)成本低、重量輕、體積小的優(yōu)勢(shì)在和其他安防傳感器對(duì)比下顯現(xiàn)得比較明顯。作為一種非接觸
2021-08-24 16:47:09
隨著汽車的普及率越來越高,以及 AI 的蓬勃發(fā)展,汽車的智能化程度在不斷提高,對(duì)于駕駛的安全性和舒適性也不斷提高;毫米波雷達(dá)因其探測(cè)精度高,硬件體積小,不受天氣環(huán)境的影響等優(yōu)點(diǎn)被廣泛采用。越來越多
2019-09-19 09:05:02
顯示平均噪聲水平(DANL)。4ghz 校正分析帶寬的高通量衛(wèi)星通信。蜂窩和衛(wèi)星通信根據(jù)3gpp 5G 新無線電(5G NR)標(biāo)準(zhǔn)第15版和第16版測(cè)試5g 組件和設(shè)備需要一個(gè)具有更高精度、靈敏度
2022-03-15 17:45:59
成本也非常昂貴,類似于今天的激光雷達(dá),只能應(yīng)用在少量的高端車型上。2000年初,鍺硅(SiGe)工藝的發(fā)展,大大提高了毫米波雷達(dá)芯片的集成度,一個(gè)毫米波雷達(dá)只需要2到5顆MMICs、1到2顆BBICs
2022-03-09 10:24:55
Ettus USRP X410 與稜研科技 UD Box 5G 變頻器和 BBox 5G 波束成形器,應(yīng)用于先進(jìn)的無線通信和感測(cè)研究,包含5G/6G、衛(wèi)星通信、雷達(dá)等陸??疹I(lǐng)域。此新推出的毫米波通信原型
2023-02-21 13:44:53
大家好!
? 請(qǐng)教一下CC1101的接收靈敏度能不能用安捷倫的E4432B檢測(cè)出它的接收靈敏度的,如果行,那具體要怎么做?
2018-05-15 01:48:25
采用77GHz毫米波雷達(dá)的自主巡航控制系統(tǒng);2003年,博世研制的77GHz車載雷達(dá)正式投入商用;2013年,松下與富士通研制出79GHz頻帶毫米波車載雷達(dá)。目前,毫米波車載雷達(dá)的關(guān)鍵技術(shù)主要由大陸
2019-05-10 06:20:23
毫米波雷達(dá)是測(cè)量被測(cè)物體相對(duì)距離、現(xiàn)對(duì)速度、方位的高精度傳感器,早期被應(yīng)用于軍事領(lǐng)域,隨著雷達(dá)技術(shù)的發(fā)展與進(jìn)步,毫米波雷達(dá)傳感器開始應(yīng)用于汽車電子、無人機(jī)、智能交通等多個(gè)領(lǐng)域。
2019-08-07 08:01:28
一直以來,許多技術(shù)領(lǐng)先的廠商都致力于開發(fā)高度集成的雷達(dá)視覺技術(shù),實(shí)現(xiàn)精準(zhǔn)且不受環(huán)境噪音影響的效果。一架巨大的飛機(jī)在屏幕上只能呈現(xiàn)為一個(gè)點(diǎn),那已經(jīng)是過去的老舊雷達(dá)屏幕了。現(xiàn)如今,采用TI獨(dú)特毫米波技術(shù)
2019-03-13 06:45:11
相比,毫米波雷達(dá)穿透霧、煙、灰塵的能力強(qiáng),抗干擾能力強(qiáng),具有全天候全天時(shí)的特點(diǎn)。隨著雷達(dá)技術(shù)的發(fā)展與進(jìn)步,毫米波雷達(dá)傳感器開始應(yīng)用于汽車電子、安防、無人機(jī)、智能交通等多個(gè)行業(yè)中。汽車引入毫米波雷達(dá)
2021-10-28 15:14:21
需求 的前提 下 , 再對(duì)該區(qū)域形成全方位髙效率 的監(jiān)控 。 基于上述對(duì)雷達(dá)探測(cè) 和無線通信 系統(tǒng)集成可能性和可 行性 的分析 , 高鐵場(chǎng)景下 集超 寬 帶毫 米波通信與 毫米波探測(cè) 技術(shù)為一體 的系
2018-03-27 11:49:17
采樣率為3.2Gsps。該系統(tǒng)可用于高速視頻傳輸、毫米波室內(nèi)定位、毫米波無線回傳,通過板級(jí)擴(kuò)展可實(shí)現(xiàn)MIMO無線傳輸,單端可實(shí)現(xiàn)毫米波數(shù)字陣列波束掃描。另外該系統(tǒng)可
2022-09-28 17:42:24
- 42.4 GHz頻率經(jīng)一雙極化喇叭天線發(fā)射,此毫米波信號(hào)由另一地的收發(fā)機(jī)B經(jīng)其喇叭天線同極化接收,下變頻后送基帶處理;反方向收發(fā)機(jī)B到A的通信亦同理,在43.2
2023-01-28 15:53:44
什么是接收靈敏度
摘要:本應(yīng)用筆記論述了擴(kuò)頻系統(tǒng)靈敏度的定義以及計(jì)算數(shù)字通信接收機(jī)靈敏度的方法。本文提供了接收機(jī)靈敏度方程的逐步推
2009-05-08 10:46:51
3880 
研究人員開發(fā)了一種毫米波(mmW)無線通信系統(tǒng),可實(shí)現(xiàn)遠(yuǎn)程通信,并能從無人機(jī)實(shí)時(shí)傳輸4K未壓縮視頻。
2019-09-02 16:58:45
738 靈敏度在無線模塊中是一項(xiàng)非常重要的參數(shù),在無線通訊領(lǐng)域中,接收靈敏度就好比人類的聽力一樣,提高信號(hào)的接收靈敏度可使無線產(chǎn)品具有更強(qiáng)地捕獲弱信號(hào)的能力。當(dāng)傳輸距離越遠(yuǎn)時(shí),信號(hào)就會(huì)越弱,這時(shí)靈敏度
2021-09-13 11:33:57
2700 
解決方案的“創(chuàng)新工場(chǎng)”。在無線通信領(lǐng)域,毫米波技術(shù)是“象牙塔”的上端,是產(chǎn)業(yè)鏈需要攻克的自主核心技術(shù)的重要方向。日前,俊知集團(tuán)結(jié)合市場(chǎng)需求與技術(shù)發(fā)展,最新開發(fā)了一套工作
2023-01-29 15:26:25
737 
5G毫米波技術(shù)是新一代移動(dòng)通信技術(shù)中的重要組成部分,相比傳統(tǒng)的無線通信技術(shù),它具有許多優(yōu)勢(shì)。 隨著互聯(lián)網(wǎng)的不斷發(fā)展和人們對(duì)通信速度和網(wǎng)絡(luò)容量的不斷需求,無線通信技術(shù)也在不斷進(jìn)步。5G毫米波技術(shù)作為
2023-12-27 11:37:55
435
評(píng)論