chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)的可學(xué)習(xí)性如何判定?

MqC7_CAAI_1981 ? 來(lái)源:YXQ ? 2019-08-09 18:24 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

2019年中國(guó)人工智能大會(huì)(Chinese Congress on Artificial Intelligence 2019,簡(jiǎn)稱“CCAI 2019”)將于9月21日-22日在青島膠州召開。加拿大滑鐵盧大學(xué)教授Shai Ben-David將出席大會(huì)并發(fā)表演講。

Shai Ben-David教授的研究興趣涉及計(jì)算機(jī)科學(xué)及其應(yīng)用基礎(chǔ)理論,特別是在統(tǒng)計(jì)和機(jī)器學(xué)習(xí)方面有很多的研究。他一直在探索如何為一些十分流行的機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘范式提供理論基礎(chǔ),用數(shù)學(xué)公式加深我們對(duì)這個(gè)世界的理解。

機(jī)器學(xué)習(xí)的可學(xué)習(xí)性如何判定?

在業(yè)界,近些年來(lái)機(jī)器學(xué)習(xí)在人機(jī)對(duì)弈、語(yǔ)音識(shí)別、圖像識(shí)別等場(chǎng)景下取得了蓬勃發(fā)展,引發(fā)了人們對(duì)人工智能改造未來(lái)社會(huì)的無(wú)限熱情和期待。但在學(xué)界,卻有不少科學(xué)家指出了機(jī)器學(xué)習(xí)的發(fā)展局限。而Shai Ben-David探索的就是這樣一個(gè)機(jī)器學(xué)習(xí)的本質(zhì)問題:我們能不能判定人工智能的可學(xué)習(xí)性?

長(zhǎng)久以來(lái),我們一直認(rèn)為只要給定了對(duì)學(xué)習(xí)任務(wù)的一個(gè)精準(zhǔn)的描述,我們就可以去判定一個(gè)機(jī)器學(xué)習(xí)算法能否進(jìn)行學(xué)習(xí)并執(zhí)行這個(gè)任務(wù)。但Shai Ben-David通過(guò)研究給出一個(gè)驚人的答案:不一定!這項(xiàng)成果近期被發(fā)表了Nature Machine Intelligence一刊上。

他指出,如果一個(gè)問題只需要“是”或“否”的回答,我們還是可以確切地知道這個(gè)問題可否被機(jī)器學(xué)習(xí)算法解決。但是,一旦涉及到更一般的設(shè)置時(shí),我們就無(wú)法區(qū)分可學(xué)習(xí)和不可學(xué)習(xí)的任務(wù)了。

存在無(wú)法用數(shù)學(xué)來(lái)證明或反駁的機(jī)器學(xué)習(xí)問題

在機(jī)器學(xué)習(xí)中,對(duì)于面部識(shí)別或推薦引擎等非線性可判斷問題,在定義機(jī)器學(xué)習(xí)的可學(xué)習(xí)性時(shí),我們通常是要求這個(gè)機(jī)器學(xué)習(xí)模型是一族函數(shù)中的預(yù)測(cè)性能最佳的。于是,我們一般會(huì)通過(guò)維度分析的方式來(lái)解釋一個(gè)模型的可學(xué)習(xí)性。而在這項(xiàng)研究中,Shai Ben-David等人設(shè)計(jì)了一個(gè)機(jī)器學(xué)習(xí)問題EMX(Estimating the Maximum)。

舉個(gè)實(shí)際的例子來(lái)說(shuō),你希望在網(wǎng)站上投放廣告,并最大限度地讓這些廣告有更大目標(biāo)觀眾數(shù)量。你有向面向不同的年齡段的用戶的不同的宣傳廣告,但你不知道誰(shuí)會(huì)訪問這個(gè)網(wǎng)站,也不知道年齡分布。你如何選擇一組廣告,最大限度地增加你的目標(biāo)觀眾數(shù)量?這就是一個(gè)現(xiàn)實(shí)的EMX問題。

在他的工作中,結(jié)果表明,EMX問題的解等價(jià)于連續(xù)統(tǒng)假設(shè),即只有在連續(xù)統(tǒng)假設(shè)成立的情況下,EMX問題才是可解決的。這意味著,“人工智能是否具有可學(xué)習(xí)性?”這個(gè)問題的答案和連續(xù)統(tǒng)假設(shè)一樣不可知。

但進(jìn)一步研究發(fā)現(xiàn),產(chǎn)生這一結(jié)論的根源在于將可學(xué)習(xí)性定義為學(xué)習(xí)函數(shù)的存在性,而不是學(xué)習(xí)算法的存在性。與算法的存在相比,函數(shù)在無(wú)限域上的存在是一個(gè)微妙的問題。他的工作表明,當(dāng)涉及到更一般的學(xué)習(xí)類型時(shí),這種關(guān)于可學(xué)習(xí)性的集合論觀點(diǎn)代價(jià)很高。

結(jié)語(yǔ)

對(duì)于目前深度學(xué)習(xí)技術(shù)得到廣泛應(yīng)用的狀況,Shai Ben-David教授也提出了自己的看法:“我們必須謹(jǐn)慎行事,現(xiàn)在有一種大趨勢(shì),人們只關(guān)注于應(yīng)用一個(gè)成功的工具,但是很少有人去關(guān)注為什么它會(huì)成功以及沒有理論保證它們會(huì)繼續(xù)取得成功?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1814

    文章

    49967

    瀏覽量

    263726
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8546

    瀏覽量

    136535

原文標(biāo)題:CCAI 2019 | Shai Ben-David:人工智能的可學(xué)習(xí)性能否判定?

文章出處:【微信號(hào):CAAI-1981,微信公眾號(hào):中國(guó)人工智能學(xué)會(huì)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    機(jī)器學(xué)習(xí)和深度學(xué)習(xí)中需避免的 7 個(gè)常見錯(cuò)誤與局限性

    無(wú)論你是剛?cè)腴T還是已經(jīng)從事人工智能模型相關(guān)工作一段時(shí)間,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)中都存在一些我們需要時(shí)刻關(guān)注并銘記的常見錯(cuò)誤。如果對(duì)這些錯(cuò)誤置之不理,日后可能會(huì)引發(fā)諸多麻煩!只要我們密切關(guān)注數(shù)據(jù)、模型架構(gòu)
    的頭像 發(fā)表于 01-07 15:37 ?112次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>中需避免的 7 個(gè)常見錯(cuò)誤與局限性

    如何深度學(xué)習(xí)機(jī)器視覺的應(yīng)用場(chǎng)景

    深度學(xué)習(xí)視覺應(yīng)用場(chǎng)景大全 工業(yè)制造領(lǐng)域 復(fù)雜缺陷檢測(cè):處理傳統(tǒng)算法難以描述的非標(biāo)準(zhǔn)化缺陷模式 非標(biāo)產(chǎn)品分類:對(duì)形狀、顏色、紋理多變的產(chǎn)品進(jìn)行智能分類 外觀質(zhì)量評(píng)估:基于學(xué)習(xí)的外觀質(zhì)量標(biāo)準(zhǔn)判定 精密
    的頭像 發(fā)表于 11-27 10:19 ?167次閱讀

    如何在機(jī)器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實(shí)的編程技能才能真正掌握并合理使用這項(xiàng)技術(shù)。事實(shí)上,這種印象忽視了該技術(shù)為機(jī)器視覺(乃至生產(chǎn)自動(dòng)化)帶來(lái)的潛力,因?yàn)樯疃?b class='flag-5'>學(xué)習(xí)并非只屬于計(jì)算機(jī)科學(xué)家或程序員。 從頭開始:什么
    的頭像 發(fā)表于 09-10 17:38 ?812次閱讀
    如何在<b class='flag-5'>機(jī)器</b>視覺中部署深度<b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    如何解決開發(fā)機(jī)器學(xué)習(xí)程序時(shí)Keil項(xiàng)目只能在調(diào)試模式下運(yùn)行,但無(wú)法正常執(zhí)行的問題?

    如何解決開發(fā)機(jī)器學(xué)習(xí)程序時(shí)Keil項(xiàng)目只能在調(diào)試模式下運(yùn)行,但無(wú)法正常執(zhí)行的問題
    發(fā)表于 08-28 07:28

    貿(mào)澤電子2025邊緣AI與機(jī)器學(xué)習(xí)技術(shù)創(chuàng)新論壇回顧(上)

    2025年,隨著人工智能技術(shù)的快速發(fā)展,邊緣AI與機(jī)器學(xué)習(xí)市場(chǎng)迎來(lái)飛速增長(zhǎng),據(jù)Gartner預(yù)計(jì),2025年至2030年,邊緣AI市場(chǎng)將保持23%的復(fù)合年增長(zhǎng)率。
    的頭像 發(fā)表于 07-21 11:08 ?1104次閱讀
    貿(mào)澤電子2025邊緣AI與<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>技術(shù)創(chuàng)新論壇回顧(上)

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    隨著機(jī)器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無(wú)法滿足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場(chǎng)可編程門陣列)作為一種靈活且高效的硬件加速平臺(tái)
    的頭像 發(fā)表于 07-16 15:34 ?2776次閱讀

    NVIDIA Isaac Lab可用環(huán)境與強(qiáng)化學(xué)習(xí)腳本使用指南

    Lab 是一個(gè)適用于機(jī)器人學(xué)習(xí)的開源模塊化框架,其模塊化高保真仿真適用于各種訓(xùn)練環(huán)境,Isaac Lab 同時(shí)支持模仿學(xué)習(xí)(模仿人類)和強(qiáng)化學(xué)習(xí)(在嘗試和錯(cuò)誤中進(jìn)行學(xué)習(xí)),為所有
    的頭像 發(fā)表于 07-14 15:29 ?2165次閱讀
    NVIDIA Isaac Lab可用環(huán)境與強(qiáng)化<b class='flag-5'>學(xué)習(xí)</b>腳本使用指南

    使用MATLAB進(jìn)行無(wú)監(jiān)督學(xué)習(xí)

    無(wú)監(jiān)督學(xué)習(xí)是一種根據(jù)未標(biāo)注數(shù)據(jù)進(jìn)行推斷的機(jī)器學(xué)習(xí)方法。無(wú)監(jiān)督學(xué)習(xí)旨在識(shí)別數(shù)據(jù)中隱藏的模式和關(guān)系,無(wú)需任何監(jiān)督或關(guān)于結(jié)果的先驗(yàn)知識(shí)。
    的頭像 發(fā)表于 05-16 14:48 ?1330次閱讀
    使用MATLAB進(jìn)行無(wú)監(jiān)督<b class='flag-5'>學(xué)習(xí)</b>

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合**

    【技術(shù)干貨】nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合 近期收到不少伙伴咨詢nRF54系列芯片的應(yīng)用與技術(shù)細(xì)節(jié),今天我們整理幾個(gè)核心問題與解答,帶你快速掌握如何在nRF54上部署AI
    發(fā)表于 04-01 00:00

    請(qǐng)問STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?
    發(fā)表于 03-13 07:34

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機(jī)器人日常

    在人工智能和機(jī)器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機(jī)器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡(jiǎn)直殺瘋了!靠著逆天的深度學(xué)習(xí)
    的頭像 發(fā)表于 02-19 15:49 ?819次閱讀

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場(chǎng)的未來(lái)發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?690次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過(guò)逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展 深度學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 02-12 15:15 ?1611次閱讀

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    與人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能和機(jī)器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù) 人工智能(AI)和機(jī)器學(xué)習(xí)(ML)是現(xiàn)代科技的
    的頭像 發(fā)表于 01-25 17:37 ?1807次閱讀
    人工智能和<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的概念與應(yīng)用

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機(jī)器學(xué)習(xí)模型部署在資源受限的設(shè)備(如微
    的頭像 發(fā)表于 01-25 17:05 ?1416次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開發(fā)環(huán)境