chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

因機器學習被改變的十個領域

新機器視覺 ? 2019-08-28 18:54 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

人工智能有潛力為全球企業(yè)的營銷和銷售創(chuàng)造1.4至2.6萬億美元的價值,為供應鏈管理和制造業(yè)創(chuàng)造1.2至2萬億美元的價值。

根據IDC的數據,到2021年,20%的領先制造商將依賴嵌入式人工智能,使用人工智能、物聯(lián)網區(qū)塊鏈應用程序來實現流程自動化,并將執(zhí)行時間最多提高25%。

德勤(Deloitte)的數據顯示,在離散制造行業(yè),機器學習可以將產品質量提高35%。

麥肯錫(McKinsey)的數據顯示,在未來5至7年內,50%的公司將采用人工智能技術,由于其對數據的嚴重依賴,這些公司的現金流有可能翻一番,制造業(yè)在所有行業(yè)中處于領先地位。

到2020年,60%的領先制造商將依靠數字平臺支撐高達30%的總收入。

根據麥肯錫具有里程碑意義的研究,48%的日本制造商看到了將機器學習和數字制造技術整合到他們的運營中去的更大的機會,這比他們最初認為的要多。

一句話:2019年制造商的主要增長戰(zhàn)略是通過投資機器學習平臺來提高車間生產率,這些平臺能夠提供提高產品質量和產量所需的洞察力。

使用機器學習來簡化生產的每一個階段,從入站供應商的質量到生產計劃的執(zhí)行現在是制造業(yè)的一個優(yōu)先事項。根據德勤(Deloitte)最近的一項調查,機器學習正在將計劃外的機器停機時間減少15%至30%,將生產吞吐量提高20%,將維護成本降低30%,并將質量提高35%。

以下是機器學習將徹底改變制造的十個領域:

●人工智能有潛力為全球企業(yè)的營銷和銷售創(chuàng)造1.4至2.6萬億美元的價值,為供應鏈管理和制造業(yè)創(chuàng)造1.2至2萬億美元的價值。麥肯錫(McKinsey)預計,基于人工智能的預測性維護有可能為制造商帶來0.5美元至0.7億美元的價值。麥肯錫指出,人工智能能夠處理包括音頻和視頻在內的大量數據,這意味著它能夠快速識別異常,防止系統(tǒng)崩潰。機器學習可以確定一個特定的聲音是飛機發(fā)動機在質量測試下正常工作的聲音,還是裝配線上即將發(fā)生故障的機器發(fā)出的聲音。

資料來源:麥肯錫/哈佛商業(yè)評論。人工智能的大部分商業(yè)用途將由MICHAEL CHUI、NICOLAUS HENKE和MEHDI MIREMADI在兩個領域進行。

●制造商們正在獲得新的洞見,了解如何利用機器學習和可在云平臺上擴展的預測分析,使企業(yè)變得更加可持續(xù)。流程制造商正在使用Azure的Symphony Industrial AI從一個模板庫中部署設備模型,其中包括熱交換器、泵、壓縮機和流程制造商所依賴的其他資產。Symphony AI的Process 360 AI幫助用戶創(chuàng)建流程的預測模型。流程是指通過設備生產的項目(如化學品、燃料、金屬、其他中間體和成品)。工藝模板示例包括氨工藝、乙烯工藝、液化天然氣工藝和聚丙烯工藝。流程模型有助于預測流程混亂和故障——僅憑設備模型可能無法預測這些故障。

資料來源:微軟AZURE博客,使用SYMPHONY INDUSTRIAL AI實現對制造業(yè)的預測分析,

●波士頓咨詢集團(BCG)發(fā)現,制造商使用人工智能可以將制造商的轉換成本降低至多20%,而高達70%的成本降低是由更高的勞動力生產率造成的。波士頓咨詢集團發(fā)現,生產商將能夠通過使用人工智能來開發(fā)和生產針對特定客戶的創(chuàng)新產品,并在更短的交付周期內交付,從而產生額外的銷售。下圖展示了基于BCG分析的人工智能將如何為生產過程帶來更大的靈活性和規(guī)模。

資料來源:波士頓咨詢集團,人工智能未來工廠,2018年4月18日。

●依賴于重資產的離散和流程制造商正在使用人工智能和機器學習來提高產量、能源消耗和每小時利潤。擁有重型設備(包括大型機械)的制造商正在探索使用算法來提高產量、可持續(xù)性和收益率。麥肯錫發(fā)現,人工智能能夠自動化復雜的任務,并提供一致性和精確的最佳設定值,使機器能夠在自動駕駛模式下運行,這對于實現一次或多次生產班次的無人值守生產至關重要。

●基于人工智能和機器學習的產品缺陷檢測和質量保證顯示出將生產效率提高50%或更多的潛力。機器學習在發(fā)現產品及其包裝中的異常方面的固有優(yōu)勢,對于提高產品質量和阻止缺陷產品離開生產設施具有重要的潛力。與人工檢查相比,使用基于深度學習的系統(tǒng)可以改進高達90%的缺陷檢測??紤]到開源人工智能環(huán)境的可用性,以及相機和功能強大的計算機等廉價硬件,即使是小型企業(yè),預計也將越來越依賴基于人工智能的視覺檢查。在人工智能視覺質量檢測中,通過從不同角度對好產品和壞產品進行視覺成像,生成參考示例,從而促進監(jiān)督學習算法的訓練。

資料來源:人工智能(AI)的智能化——德國及其工業(yè)部門在智能化方面有什么好處?

●機器學習有潛力減少制造業(yè)長期的勞動力短缺,同時找到留住員工的新方法。如今,制造業(yè)正面臨嚴重的勞動力短缺,每一項針對制造商的調查都反映出這一問題是制約該行業(yè)增長的三大因素之一。承擔這一挑戰(zhàn)的最有趣的公司之一是Eightfold。他們基于AI的人才智能平臺依賴于一系列有監(jiān)督和無監(jiān)督的機器學習算法,以匹配候選人獨特的能力,經驗和優(yōu)勢。包括ConAgra在內的制造商依靠Eightfold來改善招聘并重新發(fā)現他們?yōu)閳F隊配備和追求增長機會所需的人才。下圖解釋了Eightfold人才智能平臺的工作原理

●機器學習正在幫助制造商解決以前無法解決的問題,并揭示他們從未知道存在的問題,包括隱藏的瓶頸或無利可圖的生產線。提高車間內每臺機器的預測維修精度,揭示如何提高每臺機器的產量/吞吐量和相關工作流程,優(yōu)化系統(tǒng)和供應鏈。下面的圖表說明了機器學習如何從機器級開始提高車間的生產力,然后擴展到工作流和它們所依賴的系統(tǒng)。

●機器學習可以顯著改善產品配置,而制造商依賴于按訂單構建產品的配置-價格-報價(CPQ)工作流。西門子銷售、設計和安裝鐵路聯(lián)鎖控制系統(tǒng)的方法使用人工智能和機器學習,從1090種可能的組合中找出最優(yōu)配置。機器學習擅長于定義最適合客戶需求的最優(yōu)配置,同時也是最可靠的產品。

●人工智能和機器學習在制造業(yè)的應用預計將在未來五年超越機器人技術,成為制造業(yè)的主要用例。供應鏈操作的復雜性和約束條件是機器學習算法提供推薦解決方案的理想用例。如今,制造商們正在尋求進行預測性維護的試點,其中最有可能進入生產領域的是那些能夠帶來明顯收益的產品。

●機器學習正在徹底改變制造商保護每一個威脅表面的方式,依賴于零信任安全(ZTS)框架來保護和擴展它們的操作。制造商正在轉向零信任安全(ZTS)框架,以保護整個供應鏈和生產網絡上的每個網絡、云和內部平臺、操作系統(tǒng)和應用程序。Forrester首席分析師蔡斯?坎寧安(Chase Cunningham)是零信任安全方面的主要權威,他最近的視頻《行動中的零信任》(Zero Trust In Action)值得一看,以進一步了解制造商如何保護其IT基礎設施。在這一領域有幾家公司值得關注,其中包括MobileIron,它創(chuàng)建了一個以移動為中心的、零信任的企業(yè)安全框架,如今正是制造商所依賴的。centrfy對身份訪問管理的方法阻止了特權帳戶濫用,而特權帳戶濫用是當前入侵的主要原因。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1813

    文章

    49713

    瀏覽量

    261298
  • 機器學習
    +關注

    關注

    66

    文章

    8541

    瀏覽量

    136209

原文標題:機器學習將徹底改變制造業(yè)的十個領域

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    提高單片機抗干擾能力的十個細節(jié)

    RAM、外擴RAM、E2PROM 中的數據都有可能受到外界干擾而變化。 1.4 程序運行失常外界的干擾有時導致機器頻繁復位而影響程序的正常運行。若外界干擾導致單片機程序計數器PC值的改變,則破壞了程序
    發(fā)表于 11-25 06:12

    可靠性設計的十個重點

    專注于光電半導體芯片與器件可靠性領域的科研檢測機構,能夠對LED、激光器、功率器件等關鍵部件進行嚴格的檢測,致力于為客戶提供高質量的測試服務,為光電產品在各種高可靠性場景中的穩(wěn)定應用提供堅實的質量
    的頭像 發(fā)表于 08-01 22:55 ?761次閱讀
    可靠性設計的<b class='flag-5'>十個</b>重點

    FPGA在機器學習中的具體應用

    ,越來越多地應用于機器學習任務中。本文將探討 FPGA 在機器學習中的應用,特別是在加速神經網絡推理、優(yōu)化算法和提升處理效率方面的優(yōu)勢。
    的頭像 發(fā)表于 07-16 15:34 ?2610次閱讀

    成功設計符合EMC/EMI設計要求的十個技巧

    成功設計符合EMC/EMI測試要求的十個技巧1.保持小的環(huán)路當存在一磁場時,一由導電材料形成的環(huán)路充當了天線,并且把磁場轉換為圍繞環(huán)路流動的電流。電流的強度與閉合環(huán)路的面積成正比。因此,應盡
    發(fā)表于 04-15 13:46

    大鮮為人知卻功能強大的機器學習模型

    解決獨特的挑戰(zhàn)。在本文中,我們將探索一些最低估但極具實用價值的機器學習算法,這些算法絕對值得你將其納入工具箱。1.變分自編碼器(VariationalAutoen
    的頭像 發(fā)表于 04-02 14:10 ?902次閱讀
    <b class='flag-5'>十</b>大鮮為人知卻功能強大的<b class='flag-5'>機器</b><b class='flag-5'>學習</b>模型

    名單公布!【書籍評測活動NO.58】ROS 2智能機器人開發(fā)實踐

    的應用功能就可以快速分享了。 例如,我做的自主導航功能你可以用,你做的物體抓取功能我也可以用, 只需開發(fā)一標準化的軟硬件平臺,在此之上的應用就會逐漸流行 ,這將打造機器領域的一
    發(fā)表于 03-03 14:18

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數據量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習模型市場的未來發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?610次閱讀

    20經典電路分享

    ? 20經典電路,工程師平均懂10,你拖后腿了嗎? 引言 對模擬電路的掌握分為三層次。 初級層次是熟練記住這二十個電路,清楚這二十個
    的頭像 發(fā)表于 02-10 18:19 ?4826次閱讀
    20<b class='flag-5'>個</b>經典電路分享

    人工智能和機器學習以及Edge AI的概念與應用

    與人工智能相關各種技術的概念介紹,以及先進的Edge AI(邊緣人工智能)的最新發(fā)展與相關應用。 人工智能和機器學習是現代科技的核心技術 人工智能(AI)和機器學習(ML)是現代科技的
    的頭像 發(fā)表于 01-25 17:37 ?1562次閱讀
    人工智能和<b class='flag-5'>機器</b><b class='flag-5'>學習</b>以及Edge AI的概念與應用

    傳統(tǒng)機器學習方法和應用指導

    用于開發(fā)生物學數據的機器學習方法。盡管深度學習(一般指神經網絡算法)是一強大的工具,目前也非常流行,但它的應用領域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1961次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    如何選擇云原生機器學習平臺

    當今,云原生機器學習平臺因其彈性擴展、高效部署、低成本運營等優(yōu)勢,逐漸成為企業(yè)構建和部署機器學習應用的首選。然而,市場上的云原生機器
    的頭像 發(fā)表于 12-25 11:54 ?693次閱讀

    zeta在機器學習中的應用 zeta的優(yōu)缺點分析

    在探討ZETA在機器學習中的應用以及ZETA的優(yōu)缺點時,需要明確的是,ZETA一詞在不同領域可能有不同的含義和應用。以下是根據不同領域的ZETA進行的分析: 一、ZETA在
    的頭像 發(fā)表于 12-20 09:11 ?1601次閱讀

    cmp在機器學習中的作用 如何使用cmp進行數據對比

    機器學習領域,"cmp"這個術語可能并不是一常見的術語,它可能是指"比較"(comparison)的縮寫。 比較在機器
    的頭像 發(fā)表于 12-17 09:35 ?1310次閱讀

    構建云原生機器學習平臺流程

    構建云原生機器學習平臺是一復雜而系統(tǒng)的過程,涉及數據收集、處理、特征提取、模型訓練、評估、部署和監(jiān)控等多個環(huán)節(jié)。
    的頭像 發(fā)表于 12-14 10:34 ?669次閱讀

    自然語言處理與機器學習的關系 自然語言處理的基本概念及步驟

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能和語言學領域的一分支,它致力于研究如何讓計算機能夠理解、解釋和生成人類語言。機器學習(Ma
    的頭像 發(fā)表于 12-05 15:21 ?2532次閱讀