chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能入門的三道門檻

mK5P_AItists ? 來(lái)源:人工智能學(xué)家 ? 2019-11-24 07:47 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

廣義的說,人工智能包含諸多不同方法,其主旨是讓程序像一個(gè)智能體一樣解決問題。機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的一種方法,它不完全依靠預(yù)先設(shè)計(jì),而是從數(shù)據(jù)中進(jìn)行總結(jié),達(dá)到模擬記憶、推理的作用。包括諸如支持向量機(jī)(SVM)、各類基于決策樹的算法(包括Boosting、Bagging、Random Forest等),各類基于人工神經(jīng)網(wǎng)絡(luò)的算法(例如簡(jiǎn)單網(wǎng)絡(luò)及深度網(wǎng)絡(luò)等),以及多方法的集成等。

基于人工智能的發(fā)展優(yōu)勢(shì),很多小伙伴都想要在這個(gè)領(lǐng)域大展宏圖,但擺在面前的三道門檻是需要你逐一攻克的。下面,武漢維識(shí)教育科技給大家具體分析一下人工智能入門的三道門檻。

門檻一:數(shù)學(xué)基礎(chǔ)

我們應(yīng)該了解過,無(wú)論對(duì)于大數(shù)據(jù)還是對(duì)于人工智能而言,其實(shí)核心就是數(shù)據(jù),通過整理數(shù)據(jù)、分析數(shù)據(jù)來(lái)實(shí)現(xiàn)的,所以數(shù)學(xué)成為了人工智能入門的必修課程!數(shù)學(xué)基礎(chǔ)知識(shí)蘊(yùn)含著處理智能問題的基本思想與方法,也是理解復(fù)雜算法的必備要素。今天的種種人工智能技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,要了解人工智能,首先要掌握必備的數(shù)學(xué)基礎(chǔ)知識(shí),具體來(lái)說包括:

1、線性代數(shù):如何將研究對(duì)象形式化?

事實(shí)上,線性代數(shù)不僅僅是人工智能的基礎(chǔ),更是現(xiàn)代數(shù)學(xué)和以現(xiàn)代數(shù)學(xué)作為主要分析方法的眾多學(xué)科的基礎(chǔ)。從量子力學(xué)到圖像處理都離不開向量和矩陣的使用。而在向量和矩陣背后,線性代數(shù)的核心意義在于提供了?種看待世界的抽象視角:萬(wàn)事萬(wàn)物都可以被抽象成某些特征的組合,并在由預(yù)置規(guī)則定義的框架之下以靜態(tài)和動(dòng)態(tài)的方式加以觀察。

著重于抽象概念的解釋而非具體的數(shù)學(xué)公式來(lái)看,線性代數(shù)要點(diǎn)如下:線性代數(shù)的本質(zhì)在于將具體事物抽象為數(shù)學(xué)對(duì)象,并描述其靜態(tài)和動(dòng)態(tài)的特性;向量的實(shí)質(zhì)是 n 維線性空間中的靜止點(diǎn);線性變換描述了向量或者作為參考系的坐標(biāo)系的變化,可以用矩陣表示;矩陣的特征值和特征向量描述了變化的速度與方向。

總之,線性代數(shù)之于人工智能如同加法之于高等數(shù)學(xué),是一個(gè)基礎(chǔ)的工具集。

2、概率論:如何描述統(tǒng)計(jì)規(guī)律?

除了線性代數(shù)之外,概率論也是人工智能研究中必備的數(shù)學(xué)基礎(chǔ)。隨著連接主義學(xué)派的興起,概率統(tǒng)計(jì)已經(jīng)取代了數(shù)理邏輯,成為人工智能研究的主流工具。在數(shù)據(jù)爆炸式增長(zhǎng)和計(jì)算力指數(shù)化增強(qiáng)的今天,概率論已經(jīng)在機(jī)器學(xué)習(xí)中扮演了核心角色。

同線性代數(shù)一樣,概率論也代表了一種看待世界的方式,其關(guān)注的焦點(diǎn)是無(wú)處不在的可能性。頻率學(xué)派認(rèn)為先驗(yàn)分布是固定的,模型參數(shù)要靠最大似然估計(jì)計(jì)算;貝葉斯學(xué)派認(rèn)為先驗(yàn)分布是隨機(jī)的,模型參數(shù)要靠后驗(yàn)概率最大化計(jì)算;正態(tài)分布是最重要的一種隨機(jī)變量的分布。

3、數(shù)理統(tǒng)計(jì):如何以小見大?

在人工智能的研究中,數(shù)理統(tǒng)計(jì)同樣不可或缺。基礎(chǔ)的統(tǒng)計(jì)理論有助于對(duì)機(jī)器學(xué)習(xí)的算法和數(shù)據(jù)挖掘的結(jié)果做出解釋,只有做出合理的解讀,數(shù)據(jù)的價(jià)值才能夠體現(xiàn)。數(shù)理統(tǒng)計(jì)根據(jù)觀察或?qū)嶒?yàn)得到的數(shù)據(jù)來(lái)研究隨機(jī)現(xiàn)象,并對(duì)研究對(duì)象的客觀規(guī)律做出合理的估計(jì)和判斷。

雖然數(shù)理統(tǒng)計(jì)以概率論為理論基礎(chǔ),但兩者之間存在方法上的本質(zhì)區(qū)別。概率論作用的前提是隨機(jī)變量的分布已知,根據(jù)已知的分布來(lái)分析隨機(jī)變量的特征與規(guī)律;數(shù)理統(tǒng)計(jì)的研究對(duì)象則是未知分布的隨機(jī)變量,研究方法是對(duì)隨機(jī)變量進(jìn)行獨(dú)立重復(fù)的觀察,根據(jù)得到的觀察結(jié)果對(duì)原始分布做出推斷。

用一句不嚴(yán)謹(jǐn)?shù)庇^的話講:數(shù)理統(tǒng)計(jì)可以看成是逆向的概率論。數(shù)理統(tǒng)計(jì)的任務(wù)是根據(jù)可觀察的樣本反過來(lái)推斷總體的性質(zhì);推斷的工具是統(tǒng)計(jì)量,統(tǒng)計(jì)量是樣本的函數(shù),是個(gè)隨機(jī)變量;參數(shù)估計(jì)通過隨機(jī)抽取的樣本來(lái)估計(jì)總體分布的未知參數(shù),包括點(diǎn)估計(jì)和區(qū)間估計(jì);假設(shè)檢驗(yàn)通過隨機(jī)抽取的樣本來(lái)接受或拒絕關(guān)于總體的某個(gè)判斷,常用于估計(jì)機(jī)器學(xué)習(xí)模型的泛化錯(cuò)誤率。

4、最優(yōu)化理論:如何找到最優(yōu)解?

本質(zhì)上講,人工智能的目標(biāo)就是最優(yōu)化:在復(fù)雜環(huán)境與多體交互中做出最優(yōu)決策。幾乎所有的人工智能問題最后都會(huì)歸結(jié)為一個(gè)優(yōu)化問題的求解,因而最優(yōu)化理論同樣是人工智能必備的基礎(chǔ)知識(shí)。最優(yōu)化理論研究的問題是判定給定目標(biāo)函數(shù)的最大值(最小值)是否存在,并找到令目標(biāo)函數(shù)取到最大值 (最小值) 的數(shù)值。如果把給定的目標(biāo)函數(shù)看成一座山脈,最優(yōu)化的過程就是判斷頂峰的位置并找到到達(dá)頂峰路徑的過程。

通常情況下,最優(yōu)化問題是在無(wú)約束情況下求解給定目標(biāo)函數(shù)的最小值;在線性搜索中,確定尋找最小值時(shí)的搜索方向需要使用目標(biāo)函數(shù)的一階導(dǎo)數(shù)和二階導(dǎo)數(shù);置信域算法的思想是先確定搜索步長(zhǎng),再確定搜索方向;以人工神經(jīng)網(wǎng)絡(luò)為代表的啟發(fā)式算法是另外一類重要的優(yōu)化方法。

5、信息論:如何定量度量不確定性?

近年來(lái)的科學(xué)研究不斷證實(shí),不確定性就是客觀世界的本質(zhì)屬性。換句話說,上帝還真就擲骰子。不確定性的世界只能使用概率模型來(lái)描述,這促成了信息論的誕生。

信息論使用“信息熵”的概念,對(duì)單個(gè)信源的信息量和通信中傳遞信息的數(shù)量與效率等問題做出了解釋,并在世界的不確定性和信息的可測(cè)量性之間搭建起一座橋梁。

總之,信息論處理的是客觀世界中的不確定性;條件熵和信息增益是分類問題中的重要參數(shù);KL 散度用于描述兩個(gè)不同概率分布之間的差異;最大熵原理是分類問題匯總的常用準(zhǔn)則。

6、形式邏輯:如何實(shí)現(xiàn)抽象推理?

1956 年召開的達(dá)特茅斯會(huì)議宣告了人工智能的誕生。在人工智能的襁褓期,各位奠基者們,包括約翰·麥卡錫、赫伯特·西蒙、馬文·閔斯基等未來(lái)的圖靈獎(jiǎng)得主,他們的愿景是讓“具備抽象思考能力的程序解釋合成的物質(zhì)如何能夠擁有人類的心智。”通俗地說,理想的人工智能應(yīng)該具有抽象意義上的學(xué)習(xí)、推理與歸納能力,其通用性將遠(yuǎn)遠(yuǎn)強(qiáng)于解決國(guó)際象棋或是圍棋等具體問題的算法。

如果將認(rèn)知過程定義為對(duì)符號(hào)的邏輯運(yùn)算,人工智能的基礎(chǔ)就是形式邏輯;謂詞邏輯是知識(shí)表示的主要方法;基于謂詞邏輯系統(tǒng)可以實(shí)現(xiàn)具有自動(dòng)推理能力的人工智能;不完備性定理向“認(rèn)知的本質(zhì)是計(jì)算”這一人工智能的基本理念提出挑戰(zhàn)。

門檻二:英語(yǔ)水平

這里說的英語(yǔ),不是說的英語(yǔ)四六級(jí),我們都知道計(jì)算機(jī)起源于國(guó)外,很多有價(jià)值的文獻(xiàn)都是來(lái)自國(guó)外,所以想要在人工智能方向有所成就,還是要讀一些外文文獻(xiàn)的,所以要達(dá)到能夠讀懂外文文獻(xiàn)的英語(yǔ)水平。

門檻三:編程技術(shù)

就像大多數(shù)軟件應(yīng)用程序的開發(fā)一樣,開發(fā)人員也在使用多種語(yǔ)言來(lái)編寫人工智能項(xiàng)目,但是現(xiàn)在還沒有任何一種完美的編程語(yǔ)言是可以完全速配人工智能項(xiàng)目的。編程語(yǔ)言的選擇往往取決于對(duì)人工智能應(yīng)用程序的期望功能。關(guān)于最佳人工智能編程語(yǔ)言的爭(zhēng)論從未停止,目前比較常用的5種人工智能編程語(yǔ)言包括:Python、C ++、Java、Lisp、Prolog。

Python

由于其語(yǔ)法的簡(jiǎn)單性和多功能性,Python成為開發(fā)人員最喜歡的人工智能開發(fā)編程語(yǔ)言。Python最打動(dòng)人心的地方之一就是便攜性,它可以在Linux、Windows、Mac OS和UNIX等平臺(tái)上使用。允許用戶創(chuàng)建交互式的、解釋的、模塊化的、動(dòng)態(tài)的、可移植的和高級(jí)的代碼。另外,Python是一種多范式編程語(yǔ)言,支持面向?qū)ο?,過程式和功能式編程風(fēng)格。由于其簡(jiǎn)單的函數(shù)庫(kù)和理想的結(jié)構(gòu),Python支持神經(jīng)網(wǎng)絡(luò)和NLP解決方案的開發(fā)。

優(yōu)點(diǎn):Python有豐富多樣的庫(kù)和工具。支持算法測(cè)試,而無(wú)需實(shí)現(xiàn)它們。Python的面向?qū)ο笤O(shè)計(jì)提高了程序員的生產(chǎn)力。與Java和C ++相比,Python的開發(fā)速度更快。

缺點(diǎn):習(xí)慣使用Python來(lái)編寫人工智能程序的程序員很難適應(yīng)其它語(yǔ)言的語(yǔ)法。與C++和Java不同的是,Python需要在解釋器的幫助下工作,這就會(huì)拖慢在AI開發(fā)中的編譯和執(zhí)行速度。此外,Python不適合移動(dòng)計(jì)算。

C ++

優(yōu)點(diǎn):C++是最快的計(jì)算機(jī)語(yǔ)言,如果你的人工智能項(xiàng)目對(duì)于時(shí)間特別敏感,那么C++是很好的選擇,它提供更快的執(zhí)行時(shí)間和更快的響應(yīng)時(shí)間(這也是為什么它經(jīng)常應(yīng)用于搜索引擎和游戲)。C++允許廣泛使用算法,并且在使用統(tǒng)計(jì)人工智能技術(shù)方面是有效的。另一個(gè)重要的因素是C++支持在開發(fā)中重用代碼。此外,C ++適用于機(jī)器學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)。

缺點(diǎn):C ++僅適用于實(shí)現(xiàn)特定系統(tǒng)或算法的核心或基礎(chǔ),多任務(wù)處理不佳。它遵循自下而上的方法,因此非常復(fù)雜。

Java

Java也是一種多范式語(yǔ)言,遵循面向?qū)ο蟮脑瓌t和一次寫入讀取/隨處運(yùn)行(WORA)的原則。它是一種AI編程語(yǔ)言,可以在任何支持它的平臺(tái)上運(yùn)行,而無(wú)需重新編譯。

在各種項(xiàng)目的開發(fā)中,Java都是常用語(yǔ)言之一,它不僅適用于NLP和搜索算法,還適用于神經(jīng)網(wǎng)絡(luò)。

Lisp

Lisp是一門計(jì)算機(jī)編程語(yǔ)言,是繼Fortran之后的第二古老的編程語(yǔ)言。隨著時(shí)間的推移,LISP逐漸發(fā)展成為一種強(qiáng)大的、動(dòng)態(tài)的編碼語(yǔ)言。有人認(rèn)為L(zhǎng)isp是最好的人工智能編程語(yǔ)言,因?yàn)樗鼮殚_發(fā)人員提供了自由。在人工智能中使用Lisp,因其靈活性可以快速進(jìn)行原型設(shè)計(jì)和實(shí)驗(yàn),當(dāng)然這也反過來(lái)促進(jìn)Lisp在AI開發(fā)中的發(fā)展,例如,Lisp有一個(gè)獨(dú)特的宏系統(tǒng),有助于開發(fā)和實(shí)現(xiàn)不同級(jí)別的智能。與大多數(shù)人工智能編程語(yǔ)言不同,Lisp在解決特定問題時(shí)更加高效,因?yàn)樗m應(yīng)了開發(fā)人員編寫解決方案的需求,非常適合于歸納邏輯項(xiàng)目和機(jī)器學(xué)習(xí)。

但很少有開發(fā)人員熟悉Lisp編程。作為一種較古老的編程語(yǔ)言,Lisp需要配置新的軟件和硬件來(lái)適應(yīng)它的使用。

Prolog

Prolog也是古老的編程語(yǔ)言之一,與Lisp一樣,它也是人工智能項(xiàng)目開發(fā)的常用語(yǔ)言,擁有靈活框架的機(jī)制,它是一種基于規(guī)則和聲明性的語(yǔ)言,包含了決定其人工智能編碼語(yǔ)言的事實(shí)和規(guī)則。Prolog支持基本的機(jī)制,例如模式匹配、基于樹的數(shù)據(jù)結(jié)構(gòu)和人工智能編程的自動(dòng)回溯。除了在人工智能項(xiàng)目中廣泛使用外,Prolog還用于創(chuàng)建醫(yī)療系統(tǒng)。

人工智能入門的三道門檻,都是一些必備的基礎(chǔ)知識(shí),所以不要嫌麻煩,打好基礎(chǔ)很關(guān)鍵!


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 編程技術(shù)
    +關(guān)注

    關(guān)注

    0

    文章

    40

    瀏覽量

    10847
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49694

    瀏覽量

    261076

原文標(biāo)題:學(xué)習(xí)人工智能必須攻克三道門檻:數(shù)學(xué)基礎(chǔ)、英語(yǔ)水平與編程技術(shù)

文章出處:【微信號(hào):AItists,微信公眾號(hào):人工智能學(xué)家】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    利用超微型 Neuton ML 模型解鎖 SoC 邊緣人工智能

    的框架小 10 倍,速度也快 10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文中,我們將介紹這對(duì)開發(fā)人員意味著什么,以及使用 Neuton 模型如何改進(jìn)您的開發(fā)和終端
    發(fā)表于 08-31 20:54

    人工智能+”行動(dòng)重磅發(fā)布!ElfBoard助力嵌入式教育智能化升級(jí)

    、民生福祉、治理能力、全球合作等6大重點(diǎn)行動(dòng),強(qiáng)化8項(xiàng)基礎(chǔ)支撐能力,推動(dòng)人工智能與經(jīng)濟(jì)社會(huì)各行業(yè)各領(lǐng)域廣泛深度融合。一、“人工智能+”行動(dòng)的總體藍(lán)圖《意見》提出分
    的頭像 發(fā)表于 08-30 16:07 ?6051次閱讀
    “<b class='flag-5'>人工智能</b>+”行動(dòng)重磅發(fā)布!ElfBoard助力嵌入式教育<b class='flag-5'>智能</b>化升級(jí)

    人工智能+”,走老路難賺到新錢

    昨天的“人工智能+”刷屏了,這算是官方第一次對(duì)“人工智能+”這個(gè)名稱定性吧?今年年初到現(xiàn)在,涌現(xiàn)出了一大批基于人工智能的創(chuàng)業(yè)者,這已經(jīng)算是AI2.0時(shí)代的第波創(chuàng)業(yè)潮了,第一波是基礎(chǔ)大
    的頭像 發(fā)表于 08-27 13:21 ?495次閱讀
    “<b class='flag-5'>人工智能</b>+”,走老路難賺到新錢

    挖到寶了!人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器

    和生態(tài)體系帶到使用者身邊 ,讓我們?cè)诩夹g(shù)學(xué)習(xí)和使用上不再受制于人。 、多模態(tài)實(shí)驗(yàn),解鎖AI全流程 它嵌入了2D視覺、深度視覺、機(jī)械手臂、語(yǔ)音識(shí)別、嵌入式傳感器等多種類AI模塊,涵蓋人工智能領(lǐng)域主要
    發(fā)表于 08-07 14:30

    挖到寶了!比鄰星人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器!

    和生態(tài)體系帶到使用者身邊 ,讓我們?cè)诩夹g(shù)學(xué)習(xí)和使用上不再受制于人。 、多模態(tài)實(shí)驗(yàn),解鎖AI全流程 它嵌入了2D視覺、深度視覺、機(jī)械手臂、語(yǔ)音識(shí)別、嵌入式傳感器等多種類AI模塊,涵蓋人工智能領(lǐng)域主要
    發(fā)表于 08-07 14:23

    超小型Neuton機(jī)器學(xué)習(xí)模型, 在任何系統(tǒng)級(jí)芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機(jī)器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競(jìng)爭(zhēng)對(duì)手的框架小10 倍,速度也快10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文中,我們將介紹
    發(fā)表于 07-31 11:38

    迅為RK3588開發(fā)板Linux安卓麒麟瑞芯微國(guó)產(chǎn)工業(yè)AI人工智能

    迅為RK3588開發(fā)板Linux安卓麒麟瑞芯微國(guó)產(chǎn)工業(yè)AI人工智能
    發(fā)表于 07-14 11:23

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會(huì)發(fā)展的當(dāng)下,無(wú)論是探索未來(lái)職業(yè)方向,還是更新技術(shù)儲(chǔ)備,掌握大模型知識(shí)都已成為新時(shí)代的必修課。從職場(chǎng)上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的智能工具,大模型正在工作生活
    發(fā)表于 07-04 11:10

    開售RK3576 高性能人工智能主板

    ,HDMI-4K 輸出,支 持千兆以太網(wǎng),WiFi,USB 擴(kuò)展/重力感應(yīng)/RS232/RS485/IO 擴(kuò)展/I2C 擴(kuò)展/MIPI 攝像頭/紅外遙控 器等功能,豐富的接口,一個(gè)全新八核擁有超強(qiáng)性能的人工智能
    發(fā)表于 04-23 10:55

    DeepSeek對(duì)人工智能領(lǐng)域的啟示

    本文作者是 IBM 董事長(zhǎng)兼首席執(zhí)行官 Arvind Krishna。他認(rèn)為,社會(huì)各界不應(yīng)止步于應(yīng)用人工智能,更要成為人工智能的共建者。
    的頭像 發(fā)表于 02-07 09:46 ?1423次閱讀

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    作者:DigiKey Editor 人工智能(AI)已經(jīng)是當(dāng)前科技業(yè)最熱門的話題,且其應(yīng)用面涉及人類生活的各個(gè)領(lǐng)域,對(duì)于各個(gè)產(chǎn)業(yè)都帶來(lái)相當(dāng)重要的影響,且即將改變?nèi)祟愇磥?lái)發(fā)展的方方面面。本文將為您介紹
    的頭像 發(fā)表于 01-25 17:37 ?1550次閱讀
    <b class='flag-5'>人工智能</b>和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    #新年新氣象,大家新年快樂!#AIGC入門及鴻蒙入門

    人工智能生成內(nèi)容(AIGC)和鴻蒙系統(tǒng)是當(dāng)前科技領(lǐng)域的兩個(gè)熱門話題。以下是對(duì)它們的入門指南: AIGC入門 1. 基礎(chǔ)概念: AIGC,全稱Artificial Intelligence
    發(fā)表于 01-13 10:46

    AIGC入門及鴻蒙入門

    人工智能生成內(nèi)容(AIGC)和鴻蒙系統(tǒng)是當(dāng)前科技領(lǐng)域的兩個(gè)熱門話題。以下是對(duì)它們的入門指南: AIGC入門 1. 基礎(chǔ)概念: AIGC,全稱Artificial Intelligence
    發(fā)表于 01-13 10:32

    人工智能推理及神經(jīng)處理的未來(lái)

    人工智能行業(yè)所圍繞的是一個(gè)受技術(shù)進(jìn)步、社會(huì)需求和監(jiān)管政策影響的動(dòng)態(tài)環(huán)境。機(jī)器學(xué)習(xí)、自然語(yǔ)言處理和計(jì)算機(jī)視覺方面的技術(shù)進(jìn)步,加速了人工智能的發(fā)展和應(yīng)用。包括醫(yī)療保健、金融和制造業(yè)在內(nèi)的各個(gè)行業(yè)對(duì)自動(dòng)化
    的頭像 發(fā)表于 12-23 11:18 ?863次閱讀
    <b class='flag-5'>人工智能</b>推理及神經(jīng)處理的未來(lái)

    人工智能應(yīng)用領(lǐng)域及未來(lái)展望

    來(lái)源: 在當(dāng)今科技飛速發(fā)展的時(shí)代,人工智能無(wú)疑是最受矚目的領(lǐng)域之一。它正以前所未有的速度改變著我們的生活、工作和社會(huì)。 ? 一、人工智能的崛起 ? 人工智能的發(fā)展可以追溯到幾十年前,但近年來(lái),隨著
    的頭像 發(fā)表于 12-07 11:29 ?2188次閱讀