chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于無監(jiān)督學(xué)習(xí)和圖學(xué)習(xí)的大數(shù)據(jù)挖掘

1ujk_Tencent_TE ? 來源:騰訊技術(shù)工程官方號 ? 2019-12-08 10:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在IJCAI-2019期間舉辦的騰訊TAIC晚宴和Booth Talk中,來自TEG數(shù)據(jù)平臺的張長旺向大家介紹了自己所在用戶畫像組的前沿科研結(jié)果:

1. 非監(jiān)督短文本層級分類;

2. 大規(guī)模復(fù)雜網(wǎng)絡(luò)挖掘和圖表示學(xué)習(xí)。

其所在團(tuán)隊積極與學(xué)術(shù)界科研合作,并希望有夢想、愛學(xué)習(xí)的實力派加入,共同研究和應(yīng)用半監(jiān)督/弱監(jiān)督/無監(jiān)督學(xué)習(xí)、小樣本學(xué)習(xí)、大規(guī)模復(fù)雜網(wǎng)絡(luò)挖掘和圖表示學(xué)習(xí)等做大數(shù)據(jù)挖掘。

科研結(jié)果1:非監(jiān)督短文本層級分類

首先以下用戶和AI算法的對話,顯示了現(xiàn)實業(yè)務(wù)中使用現(xiàn)有監(jiān)督文本分類算法的遇到的一些困境和問題:

算法需要海量訓(xùn)練數(shù)據(jù)

算法模型用戶不可控

算法不能很好的適應(yīng)類目的變化

我們分析現(xiàn)有監(jiān)督算法的主要問題在于沒有真正的知識, 沒有對于文本和類目的真正的理解?,F(xiàn)有算法只是在學(xué)習(xí)大量人工標(biāo)注訓(xùn)練樣本里面的模式。為了解決這個問題,我們啟動了一個叫做: 基于關(guān)鍵詞知識與類目知識的非監(jiān)督短文本層級分類的探索項目。

項目的主要思想是引入關(guān)鍵詞和類目兩種知識來幫助算法理解關(guān)鍵詞和類目的含義。然后基于知識進(jìn)行文本的分類和標(biāo)注。關(guān)鍵詞知識主要來自3個方面包括:關(guān)鍵詞的網(wǎng)絡(luò)搜索上下文、關(guān)鍵詞的百科上下文、關(guān)鍵詞到類目詞的后驗關(guān)聯(lián)概率。我們提出類目語義表達(dá)式來支持用戶表達(dá)豐富的類目本身和類目之間的關(guān)系的語義。這兩樣知識的引入幫助算法擺脫了對于大量人工標(biāo)注訓(xùn)練樣本的依賴,同時算法分類的過程做到了人工可理解,人工可控制。

pIYBAF3sZiCAD0NcAAGXC_cWyhc920.jpg

基于關(guān)鍵詞和類目知識的無監(jiān)督文本層級分類算法流程如下:

對文本提取關(guān)鍵詞

根據(jù)關(guān)鍵詞知識計算關(guān)鍵詞到類目詞的相關(guān)度詞向量

根據(jù)關(guān)鍵詞的相關(guān)度詞向量計算文本的相關(guān)度詞向量

根據(jù)文本的相關(guān)度詞向量和類目語義表達(dá)式計算文本與每個類目的匹配度

每個文本被分為與之匹配度最高的類目

pIYBAF3sZiCAc4I1AAFF-PRpshM196.jpg

通過在兩個文本分類數(shù)據(jù)集合上面的實驗,我們發(fā)現(xiàn),我們自研的算法能夠在沒有訓(xùn)練樣本的情況下提供質(zhì)量可用的結(jié)果,其一級類目準(zhǔn)確率能夠達(dá)到80%,并且明顯高于現(xiàn)有其他非監(jiān)督算法。

pIYBAF3sZiCAPnfmAAGamuFnOPU555.jpg

科研結(jié)果2:大規(guī)模復(fù)雜網(wǎng)絡(luò)挖掘和圖表示學(xué)習(xí)

Network Representation Learning 或者說 Graph Embedding 是復(fù)雜網(wǎng)絡(luò)最新的研究課題,意在通過神經(jīng)網(wǎng)絡(luò)模型,把圖結(jié)構(gòu)向量化,為節(jié)點(diǎn)分類、鏈路預(yù)測、社團(tuán)發(fā)現(xiàn)等挖掘任務(wù)提供方便有效的特征,以克服圖結(jié)構(gòu)難以應(yīng)用到機(jī)器學(xué)習(xí)算法中的難題。

本次我們在IJCAI發(fā)表的學(xué)術(shù)論文“Identifying Illicit Accounts in Large Scale E-payment Networks - A Graph Representation Learning Approach”創(chuàng)新性提出結(jié)合邊屬性的圖卷積神經(jīng)網(wǎng)絡(luò)模型,彌補(bǔ)了現(xiàn)有算法無法利用邊屬性為節(jié)點(diǎn)分類提供更多信息的不足。

pIYBAF3sZiCAf4jWAADyry40GSc801.jpg

現(xiàn)有的圖學(xué)習(xí)算法,絕大部分都忽視了邊上信息的價值。在這里我們提出了一種可以把邊的信息傳輸?shù)焦?jié)點(diǎn)表示結(jié)果的改進(jìn)的GCN算法。算法主要思路是在做GCN里面周邊鄰居節(jié)點(diǎn)向量的聚合計算之前,把每個節(jié)點(diǎn)連接邊的Embedding向量拼接在對應(yīng)鄰居節(jié)點(diǎn)的Embedding向量后面。實驗顯示,我們的算法對于金融分類問題具有更優(yōu)的結(jié)果。我們團(tuán)隊正在進(jìn)一步優(yōu)化模型,正在研發(fā)利用時序的GCN模型,以可以利用邊的時序交互信息,從而更好的表示動態(tài)網(wǎng)絡(luò)。

pIYBAF3sZiGAcZ4XAAGfvV5Mbk0987.jpg

pIYBAF3sZiGAVDl_AAEtrHfo7Kk905.jpg

同時,數(shù)平數(shù)據(jù)中心研發(fā)的Angel參數(shù)服務(wù)器平臺,針對關(guān)系型數(shù)據(jù)結(jié)構(gòu),在計算性能上對圖算法做了優(yōu)化,極大加速了PageRank等算法的計算速度,比如計算用戶中心度的Closeness算法,性能比基于Spark GraphX的算法提升了6.7倍。下圖顯示對于大型圖的計算,我們Angle框架的速度具有明顯的優(yōu)勢。

pIYBAF3sZiGANHYUAAEl0_C2wBk224.jpg

pIYBAF3sZiGAXUHmAAEim4GgRxY047.jpg

我們所在團(tuán)隊積極與學(xué)術(shù)界科研合作,并希望有夢想、愛學(xué)習(xí)的實力派加入,共同研究和應(yīng)用半監(jiān)督/弱監(jiān)督/無監(jiān)督學(xué)習(xí)、小樣本學(xué)習(xí)、復(fù)雜網(wǎng)絡(luò)挖掘和圖表示學(xué)習(xí)做大數(shù)據(jù)挖掘。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4761

    瀏覽量

    97167
  • 大數(shù)據(jù)
    +關(guān)注

    關(guān)注

    64

    文章

    9030

    瀏覽量

    143087

原文標(biāo)題:IJCAI2019報告:基于無監(jiān)督學(xué)習(xí)和圖學(xué)習(xí)的大數(shù)據(jù)挖掘

文章出處:【微信號:Tencent_TEG,微信公眾號:騰訊技術(shù)工程官方號】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    【團(tuán)購】獨(dú)家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實戰(zhàn)課(11大系列課程,共5000+分鐘)

    強(qiáng)化 監(jiān)督學(xué)習(xí)應(yīng)用:無需NG樣本的缺陷檢測方案,解決工業(yè)數(shù)據(jù)標(biāo)注難題 多模態(tài)融合技術(shù):PaddleOCR+YOLOv8聯(lián)動方案,實現(xiàn)\"文字識別+缺陷定位\"一體化 團(tuán)購課程大綱
    發(fā)表于 12-04 09:28

    自動駕駛數(shù)據(jù)標(biāo)注是所有信息都要標(biāo)注嗎?

    本身只是像素和點(diǎn)云。標(biāo)注的工作就是人為地給這些信號貼上語義標(biāo)簽,告訴模型這是一輛車、這是行人、這是車道線、這個區(qū)域不能通行之類的明確信息。沒有這些標(biāo)簽,監(jiān)督學(xué)習(xí)、驗證和評估都無法進(jìn)行,模型不知道哪些輸入與哪些輸出應(yīng)該
    的頭像 發(fā)表于 12-04 09:05 ?391次閱讀
    自動駕駛<b class='flag-5'>數(shù)據(jù)</b>標(biāo)注是所有信息都要標(biāo)注嗎?

    【團(tuán)購】獨(dú)家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實戰(zhàn)可(11大系列課程,共5000+分鐘)

    (覆蓋10+主流品牌),避免采購踩坑 3)稀缺技能強(qiáng)化 監(jiān)督學(xué)習(xí)應(yīng)用:無需NG樣本的缺陷檢測方案,解決工業(yè)數(shù)據(jù)標(biāo)注難題 多模態(tài)融合技術(shù):PaddleOCR+YOLOv8聯(lián)動方案,實現(xiàn)\"文字
    發(fā)表于 12-03 13:50

    自動駕駛中常提的“強(qiáng)化學(xué)習(xí)”是個啥?

    下,就是一個智能體在環(huán)境里行動,它能觀察到環(huán)境的一些信息,并做出一個動作,然后環(huán)境會給出一個反饋(獎勵或懲罰),智能體的目標(biāo)是把長期得到的獎勵累積到最大。和監(jiān)督學(xué)習(xí)不同,強(qiáng)化學(xué)習(xí)沒有一一對應(yīng)的“正確答案”給它看,而是靠與環(huán)境交互、自我探索來發(fā)現(xiàn)
    的頭像 發(fā)表于 10-23 09:00 ?344次閱讀
    自動駕駛中常提的“強(qiáng)化<b class='flag-5'>學(xué)習(xí)</b>”是個啥?

    學(xué)習(xí)物聯(lián)網(wǎng)可以做什么工作?

    健康、智能制造等領(lǐng)域。以下是一些常見的職業(yè)方向: 物聯(lián)網(wǎng)工程師:從事物聯(lián)網(wǎng)系統(tǒng)的設(shè)計、開發(fā)、測試、維護(hù)和升級等工作,包括傳感器、無線通信、云計算、大數(shù)據(jù)等技術(shù)的應(yīng)用。   嵌入式軟件工程師:負(fù)責(zé)開發(fā)
    發(fā)表于 10-11 16:40

    XKCON祥控輸煤皮帶智能機(jī)器人巡檢系統(tǒng)對監(jiān)測數(shù)據(jù)進(jìn)行挖掘分析

    XKCON祥控輸煤皮帶智能機(jī)器人巡檢系統(tǒng)通過智能機(jī)器人在皮帶運(yùn)行過程中對皮帶的運(yùn)行狀態(tài)和環(huán)境狀況進(jìn)行實時檢測,在應(yīng)用過程中,不但提升了巡視周期頻次,還通過大數(shù)據(jù)分析和深度學(xué)習(xí)算法,對監(jiān)測數(shù)據(jù)進(jìn)行
    的頭像 發(fā)表于 09-15 11:22 ?427次閱讀
    XKCON祥控輸煤皮帶智能機(jī)器人巡檢系統(tǒng)對監(jiān)測<b class='flag-5'>數(shù)據(jù)</b>進(jìn)行<b class='flag-5'>挖掘</b>分析

    任正非說 AI已經(jīng)確定是第四次工業(yè)革命 那么如何從容地加入進(jìn)來呢?

    的基本理論。了解監(jiān)督學(xué)習(xí)、監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)的基本原理。例如,在監(jiān)督學(xué)習(xí)中,理解如何通過標(biāo)注數(shù)據(jù)
    發(fā)表于 07-08 17:44

    機(jī)器學(xué)習(xí)異常檢測實戰(zhàn):用Isolation Forest快速構(gòu)建標(biāo)簽異常檢測系統(tǒng)

    本文轉(zhuǎn)自:DeepHubIMBA監(jiān)督異常檢測作為機(jī)器學(xué)習(xí)領(lǐng)域的重要分支,專門用于在缺乏標(biāo)記數(shù)據(jù)的環(huán)境中識別異常事件。本文深入探討異常檢測技術(shù)的理論基礎(chǔ)與實踐應(yīng)用,通過Isolatio
    的頭像 發(fā)表于 06-24 11:40 ?1206次閱讀
    機(jī)器<b class='flag-5'>學(xué)習(xí)</b>異常檢測實戰(zhàn):用Isolation Forest快速構(gòu)建<b class='flag-5'>無</b>標(biāo)簽異常檢測系統(tǒng)

    使用MATLAB進(jìn)行監(jiān)督學(xué)習(xí)

    監(jiān)督學(xué)習(xí)是一種根據(jù)未標(biāo)注數(shù)據(jù)進(jìn)行推斷的機(jī)器學(xué)習(xí)方法。監(jiān)督學(xué)習(xí)旨在識別
    的頭像 發(fā)表于 05-16 14:48 ?1189次閱讀
    使用MATLAB進(jìn)行<b class='flag-5'>無</b><b class='flag-5'>監(jiān)督學(xué)習(xí)</b>

    硬件原理學(xué)習(xí)筆記

    這一個星期認(rèn)真學(xué)習(xí)了硬件原理的知識,做了一些筆記,方便以后查找。硬件原理分為三類1.管腳類(gpio)和門電路類輸入輸出引腳,上拉電阻,三極管與門,或門,非門上拉電阻:正向標(biāo)志作用,給懸空的引腳
    的頭像 發(fā)表于 04-30 18:40 ?1251次閱讀
    硬件原理<b class='flag-5'>圖</b><b class='flag-5'>學(xué)習(xí)</b>筆記

    大數(shù)據(jù)與云計算是干嘛的?

    大數(shù)據(jù)與云計算是支撐現(xiàn)代數(shù)字化技術(shù)的兩大核心。大數(shù)據(jù)專注于海量數(shù)據(jù)的采集、存儲、分析與價值挖掘;云計算通過虛擬化資源池提供彈性計算、存儲及服務(wù)能力。兩者結(jié)合,共同賦能企業(yè)決策、業(yè)務(wù)創(chuàng)新
    的頭像 發(fā)表于 02-20 14:48 ?1277次閱讀

    機(jī)器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場的未來發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?627次閱讀

    迭代學(xué)習(xí)閉環(huán)系統(tǒng)simulink仿真

    其中包含了迭代學(xué)習(xí)的仿真,輸入數(shù)據(jù),控制程序等
    發(fā)表于 01-03 15:30 ?0次下載

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度學(xué)習(xí)相比,傳統(tǒng)方法在給定問題上的開發(fā)和測試速度更快。
    的頭像 發(fā)表于 12-30 09:16 ?1986次閱讀
    傳統(tǒng)機(jī)器<b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    學(xué)習(xí)硬件的第一節(jié)課:學(xué)習(xí)讀懂原理

    學(xué)習(xí)硬件的第一節(jié)課:學(xué)習(xí)讀懂原理 讀懂原理對嵌入式軟件工程師和程序員尤為重要。在深入細(xì)節(jié)之前請注意,對所有的嵌入式設(shè)計人員來說、能懂得硬件工程師創(chuàng)建和使用的來描述其硬件設(shè)計的原理
    的頭像 發(fā)表于 12-16 16:04 ?3688次閱讀
    <b class='flag-5'>學(xué)習(xí)</b>硬件的第一節(jié)課:<b class='flag-5'>學(xué)習(xí)</b>讀懂原理<b class='flag-5'>圖</b>