chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)讓圖像、語音等感知類問題取得突破

倩倩 ? 來源:光明日?qǐng)?bào) ? 2020-01-02 14:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近期,清華大學(xué)-中國(guó)工程院知識(shí)智能聯(lián)合研究中心、中國(guó)人工智能學(xué)會(huì)吳文俊人工智能科學(xué)技術(shù)獎(jiǎng)評(píng)選基地聯(lián)合發(fā)布了《2019人工智能發(fā)展報(bào)告》,遴選了13個(gè)人工智能的重點(diǎn)領(lǐng)域,包括深度學(xué)習(xí)計(jì)算機(jī)視覺、語音識(shí)別、機(jī)器人等熱點(diǎn)前沿技術(shù)的基礎(chǔ)及應(yīng)用研究、發(fā)展動(dòng)向等。

深度學(xué)習(xí)讓圖像、語音等感知類問題取得突破

機(jī)器學(xué)習(xí)是一門多領(lǐng)域交叉學(xué)科,專門研究計(jì)算機(jī)怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識(shí)或技能。

1950年,阿蘭·圖靈創(chuàng)造了圖靈測(cè)試來判定計(jì)算機(jī)是否智能。圖靈測(cè)試認(rèn)為,如果一臺(tái)機(jī)器能夠與人類展開對(duì)話而不能被辨別出其機(jī)器身份,那么稱這臺(tái)機(jī)器具有智能。這一簡(jiǎn)化使得圖靈能夠令人信服地說明“思考的機(jī)器”是可能的。

后來,IBM科學(xué)家亞瑟·塞繆爾開發(fā)的跳棋程序,駁倒了普羅維登斯提出的機(jī)器無法超越人類的論斷,像人類一樣寫代碼和學(xué)習(xí)的模式,他創(chuàng)造了“機(jī)器學(xué)習(xí)”這一術(shù)語。

然而,從20世紀(jì)60年代中期到70年代末期,機(jī)器學(xué)習(xí)的發(fā)展步伐幾乎停滯。無論是理論研究還是計(jì)算機(jī)硬件限制,整個(gè)人工智能領(lǐng)域的發(fā)展都遇到了很大的瓶頸,神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)機(jī)因理論缺陷也未能達(dá)到預(yù)期效果而轉(zhuǎn)入低潮。直到偉博斯在神經(jīng)網(wǎng)絡(luò)反向傳播(BP)算法中具體提出了多層感知機(jī)模型,機(jī)器學(xué)習(xí)得以重振,并且直到今天BP算法仍然是神經(jīng)網(wǎng)絡(luò)架構(gòu)的關(guān)鍵因素。

神經(jīng)網(wǎng)絡(luò)研究人員相繼提出了使用BP算法訓(xùn)練的多參數(shù)線性規(guī)劃的理念,成為后來深度學(xué)習(xí)的基石。在另一個(gè)譜系中,昆蘭提出了一種非常出名的機(jī)器學(xué)習(xí)算法,具體地說是ID3算法,這種算法至今仍然活躍在機(jī)器學(xué)習(xí)領(lǐng)域中。

機(jī)器學(xué)習(xí)迎來爆發(fā)期是神經(jīng)網(wǎng)絡(luò)研究領(lǐng)域領(lǐng)軍者Hinton在2006年提出了神經(jīng)網(wǎng)絡(luò)Deep Learning算法,使神經(jīng)網(wǎng)絡(luò)的能力大大提高。Hinton和他的學(xué)生 Salakhutdinov在《科學(xué)》上發(fā)表了一篇文章,開啟了深度學(xué)習(xí)在學(xué)術(shù)界和工業(yè)界的浪潮。

2015年,為紀(jì)念人工智能概念提出60周年,LeCun、Bengio和Hinton推出了深度學(xué)習(xí)的聯(lián)合綜述。深度學(xué)習(xí)可以讓那些擁有多個(gè)處理層的計(jì)算模型來學(xué)習(xí)具有多層次抽象的數(shù)據(jù)的表示,這些方法在許多方面都帶來了顯著的改善。深度學(xué)習(xí)的出現(xiàn),讓圖像、語音等感知類問題取得了真正意義上的突破,離實(shí)際應(yīng)用已如此之近,將人工智能推進(jìn)到一個(gè)新時(shí)代。

計(jì)算機(jī)視覺催生出人臉識(shí)別、智能視頻監(jiān)控等應(yīng)用

計(jì)算機(jī)視覺,顧名思義,是分析、研究讓計(jì)算機(jī)智能化地達(dá)到類似人類的雙眼“看”的一門研究科學(xué),即對(duì)于客觀存在的三維立體化的世界的理解以及識(shí)別依靠智能化的計(jì)算機(jī)去實(shí)現(xiàn)。

計(jì)算機(jī)視覺技術(shù)就是利用了攝像機(jī)以及電腦替代人眼使得計(jì)算機(jī)擁有人類的雙眼所具有的分割、分類、識(shí)別、跟蹤、判別、決策等功能。

馬爾(David Marr)《視覺》一書的問世,標(biāo)志著計(jì)算機(jī)視覺成為了一門獨(dú)立學(xué)科。計(jì)算機(jī)視覺40多年的發(fā)展中,盡管人們提出了大量的理論和方法,但總體上說,計(jì)算機(jī)視覺經(jīng)歷了三個(gè)主要?dú)v程:馬爾計(jì)算視覺、多視幾何與分層三維重建和基于學(xué)習(xí)的視覺。

目前,在計(jì)算機(jī)上調(diào)“深度網(wǎng)絡(luò)”來提高物體識(shí)別的精度似乎就等于從事“視覺研究”。馬爾的計(jì)算視覺分為三個(gè)層次:計(jì)算理論、表達(dá)和算法以及算法實(shí)現(xiàn)。由于馬爾認(rèn)為算法實(shí)現(xiàn)并不影響算法的功能和效果,所以馬爾計(jì)算視覺理論主要討論“計(jì)算理論”和“表達(dá)與算法”二部分內(nèi)容。

馬爾認(rèn)為,大腦的神經(jīng)計(jì)算和計(jì)算機(jī)的數(shù)值計(jì)算沒有本質(zhì)區(qū)別,所以馬爾沒有對(duì)“算法實(shí)現(xiàn)”進(jìn)行任何探討。從現(xiàn)在神經(jīng)科學(xué)的進(jìn)展看,“神經(jīng)計(jì)算”與數(shù)值計(jì)算在有些情況下會(huì)產(chǎn)生本質(zhì)區(qū)別,如目前興起的神經(jīng)形態(tài)計(jì)算,但總體上說,“數(shù)值計(jì)算”可以“模擬神經(jīng)計(jì)算”。至少?gòu)默F(xiàn)在看,“算法的不同實(shí)現(xiàn)途徑”,并不影響馬爾計(jì)算視覺理論的本質(zhì)屬性。

20世紀(jì)90年代初,計(jì)算機(jī)視覺從“蕭條”走向“繁榮”,主要得益于以下二方面的因素:一方面,瞄準(zhǔn)的應(yīng)用領(lǐng)域從精度和魯棒性要求太高的“工業(yè)應(yīng)用”轉(zhuǎn)到要求不太高,特別是僅僅需要“視覺效果”的應(yīng)用領(lǐng)域,如遠(yuǎn)程視頻會(huì)議、考古、虛擬現(xiàn)實(shí)、視頻監(jiān)控等;另一方面,人們發(fā)現(xiàn),多視幾何理論下的分層三維重建能有效提高三維重建的魯棒性和精度。

多視幾何的代表性人物首數(shù)法國(guó)INRIA的O.Faugeras,美國(guó) GE研究院的R.Hartely和英國(guó)牛津大學(xué)的A.Zisserman。2000年Hartely和Zisserman合著的書對(duì)這方面的內(nèi)容給出了比較系統(tǒng)的總結(jié)。大數(shù)據(jù)需要全自動(dòng)重建,而全自動(dòng)重建需要反復(fù)優(yōu)化,而反復(fù)優(yōu)化需要花費(fèi)大量計(jì)算資源。舉一個(gè)簡(jiǎn)單例子,假如要三維重建北京中關(guān)村地區(qū),為了保證重建的完整性,需要獲取大量的地面和無人機(jī)圖像。假如獲取了1萬幅地面高分辨率圖像(4000×3000)、5千幅高分辨率無人機(jī)圖像(8000×7000),三維重建要匹配這些圖像,從中選取合適的圖像集,然后對(duì)相機(jī)位置信息進(jìn)行標(biāo)定并重建出場(chǎng)景的三維結(jié)構(gòu),如此大的數(shù)據(jù)量,人工干預(yù)是不可能的,所以整個(gè)三維重建流程必須全自動(dòng)進(jìn)行。

基于學(xué)習(xí)的視覺,則是指以機(jī)器學(xué)習(xí)為主要技術(shù)手段的計(jì)算機(jī)視覺研究?;趯W(xué)習(xí)的視覺研究,文獻(xiàn)中大體上分為二個(gè)階段:21世紀(jì)初的以流形學(xué)習(xí)為代表的子空間法和目前以深度學(xué)習(xí)為代表的視覺方法。

近年來,巨量數(shù)據(jù)的不斷涌現(xiàn)與計(jì)算能力的快速提升,給以非結(jié)構(gòu)化視覺數(shù)據(jù)為研究對(duì)象的計(jì)算機(jī)視覺帶來了巨大的發(fā)展機(jī)遇與挑戰(zhàn)性難題,計(jì)算機(jī)視覺也因此成為學(xué)術(shù)界和工業(yè)界公認(rèn)的前瞻性研究領(lǐng)域,部分研究成果已實(shí)際應(yīng)用,催生出人臉識(shí)別、智能視頻監(jiān)控等多個(gè)極具顯示度的商業(yè)化應(yīng)用。

語音識(shí)別被應(yīng)用于工業(yè)、通信、醫(yī)療等行業(yè)

語音識(shí)別是讓機(jī)器識(shí)別和理解說話人語音信號(hào)內(nèi)容的新興學(xué)科,目的是將語音信號(hào)轉(zhuǎn)變?yōu)槲谋咀址蛘呙畹闹悄芗夹g(shù),利用計(jì)算機(jī)理解講話人的語義內(nèi)容,使其聽懂人類的語音,從而判斷說話人的意圖,是一種非常自然和有效的人機(jī)交流方式。

語音識(shí)別的研究工作可以追溯到20世紀(jì)50年代。在1952年,AT&T貝爾研究所研究成功了世界上第一個(gè)語音識(shí)別系統(tǒng)Audry 系統(tǒng),可以識(shí)別10個(gè)英文數(shù)字發(fā)音。這個(gè)系統(tǒng)識(shí)別的是一個(gè)人說出的孤立數(shù)字,并且很大程度上依賴于每個(gè)數(shù)字中的元音的共振峰的測(cè)量。

計(jì)算機(jī)的應(yīng)用推動(dòng)了語音識(shí)別技術(shù)的發(fā)展,使用了電子計(jì)算機(jī)進(jìn)行語音識(shí)別,提出了一系列語音識(shí)別技術(shù)的新理論——?jiǎng)討B(tài)規(guī)劃線性預(yù)測(cè)分析技術(shù),較好地解決了語音信號(hào)產(chǎn)生的模型問題。在20世紀(jì)70年代,語音識(shí)別研究取得了重大的具有里程碑意義的成果,伴隨著自然語言理解的研究以及微電子技術(shù)的發(fā)展,語音識(shí)別領(lǐng)域取得了突破性進(jìn)展。這一時(shí)期的語音識(shí)別方法基本上是采用傳統(tǒng)的模式識(shí)別策略。

后來,語音識(shí)別研究進(jìn)一步走向深入。這一時(shí)期所取得的重大進(jìn)展有:隱馬爾科夫模型(HMM)技術(shù)的成熟和不斷完善,并最終成為語音識(shí)別的主流方法;以知識(shí)為基礎(chǔ)的語音識(shí)別的研究日益受到重視。在進(jìn)行連續(xù)語音識(shí)別的時(shí)候,除了識(shí)別聲學(xué)信息外,更多地利用各種語言知識(shí),諸如構(gòu)詞、句法、語義、對(duì)話背景等方面的知識(shí)來幫助進(jìn)一步對(duì)語音識(shí)別和理解。同時(shí)在語音識(shí)別研究領(lǐng)域,還產(chǎn)生了基于統(tǒng)計(jì)概率的語言模型;人工神經(jīng)網(wǎng)絡(luò)在語音識(shí)別中的應(yīng)用研究興起。ANN具有較好的區(qū)分復(fù)雜分類邊界的能力,顯然它十分有助于模式識(shí)別。在這些研究中,大部分采用基于反向傳播算法(BP算法)的多層感知網(wǎng)絡(luò)。

語音識(shí)別技術(shù)逐漸走向?qū)嵱没?,在建立模型、提取和?yōu)化特征參數(shù)方面取得了突破性的進(jìn)展,使系統(tǒng)具有更好的自適應(yīng)性。許多發(fā)達(dá)國(guó)家和著名公司都投入大量資金用以開發(fā)和研究實(shí)用化的語音識(shí)別產(chǎn)品,從而許多具有代表性的產(chǎn)品問世。比如IBM公司研發(fā)的漢語ViaVoice系統(tǒng),以及Dragon公司研發(fā)的DragonDictate系統(tǒng),都具有說話人自適應(yīng)能力,能在用戶使用過程中不斷提高識(shí)別率。

21世紀(jì)之后,深度學(xué)習(xí)技術(shù)極大地促進(jìn)了語音識(shí)別技術(shù)的進(jìn)步,使其識(shí)別精度大大提高,應(yīng)用得到廣泛發(fā)展。2009年,Hinton將深度神經(jīng)網(wǎng)絡(luò)(DNN)應(yīng)用于語音的聲學(xué)建模,在TIMIT上獲得了當(dāng)時(shí)最好的結(jié)果。2011年底,微軟研究院的俞棟、鄧力又把DNN技術(shù)應(yīng)用在了大詞匯量連續(xù)語音識(shí)別任務(wù)上,大大降低了語音識(shí)別錯(cuò)誤率。從此語音識(shí)別進(jìn)入DNN-HMM時(shí)代。DNN帶來的好處是不再需要對(duì)語音數(shù)據(jù)分布進(jìn)行假設(shè),將相鄰的語音幀拼接又包含了語音的時(shí)序結(jié)構(gòu)信息,使得對(duì)于狀態(tài)的分類概率有了明顯提升。同時(shí)DNN還具有強(qiáng)大環(huán)境學(xué)習(xí)能力,可以提升對(duì)噪聲和口音的魯棒性。

目前,語音識(shí)別技術(shù)已逐漸被應(yīng)用于工業(yè)、通信、商務(wù)、家電、醫(yī)療、汽車電子以及家庭服務(wù)等各個(gè)領(lǐng)域。例如,現(xiàn)今流行的手機(jī)語音助手,就是將語音識(shí)別技術(shù)應(yīng)用到智能手機(jī)中,能夠?qū)崿F(xiàn)人與手機(jī)的智能對(duì)話,其中包括美國(guó)蘋果公司的Siri語音助手、智能360語音助手、百度語音助手等。

機(jī)器人與有機(jī)生命越來越接近

機(jī)器人廣義上包括一切模擬人類行為或思想以及模擬其他生物的機(jī)械(如機(jī)器狗、機(jī)器貓等)。目前,智能機(jī)器人已成為世界各國(guó)的研究熱點(diǎn)之一,成為衡量一國(guó)工業(yè)化水平的重要標(biāo)志。

機(jī)器人技術(shù)最早應(yīng)用于工業(yè)領(lǐng)域,但隨著機(jī)器人技術(shù)的發(fā)展和各行業(yè)需求的提升,在計(jì)算機(jī)技術(shù)、網(wǎng)絡(luò)技術(shù)、MEMS技術(shù)等新技術(shù)發(fā)展的推動(dòng)下,近年來,機(jī)器人技術(shù)正從傳統(tǒng)的工業(yè)制造領(lǐng)域向醫(yī)療服務(wù)、教育娛樂、勘探勘測(cè)、生物工程、救災(zāi)救援等領(lǐng)域迅速擴(kuò)展,適應(yīng)不同領(lǐng)域需求的機(jī)器人系統(tǒng)被深入研究和開發(fā)。過去幾十年,機(jī)器人技術(shù)的研究與應(yīng)用,大大推動(dòng)了人類的工業(yè)化和現(xiàn)代化進(jìn)程,并逐步形成了機(jī)器人的產(chǎn)業(yè)鏈,使機(jī)器人的應(yīng)用范圍也日趨廣泛。

在機(jī)器人嶄露頭角于工業(yè)生產(chǎn)的同時(shí),機(jī)器人技術(shù)研究不斷深入。1961年,美國(guó)麻省理工學(xué)院Lincoln實(shí)驗(yàn)室把一個(gè)配有接觸傳感器的遙控操縱器的從動(dòng)部分與一臺(tái)計(jì)算機(jī)聯(lián)結(jié)在一起,這樣形成的機(jī)器人可以憑觸覺決定物體的狀態(tài)。隨后,用電視攝像頭作為輸入的計(jì)算機(jī)圖像處理、物體辨識(shí)的研究工作也陸續(xù)取得成果。1968年,美國(guó)斯坦福人工智能實(shí)驗(yàn)室的J.McCarthy等人研究了新穎的課題——研制帶有手、眼、耳的計(jì)算機(jī)系統(tǒng)。于是,智能機(jī)器人的研究形象逐漸豐滿起來。

20世紀(jì)70年代以來,機(jī)器人產(chǎn)業(yè)蓬勃興起,機(jī)器人技術(shù)發(fā)展為專門的學(xué)科。工業(yè)機(jī)器人首先在汽車制造業(yè)的流水線生產(chǎn)中開始大規(guī)模應(yīng)用,隨后,諸如日本、德國(guó)、美國(guó)這樣的制造業(yè)發(fā)達(dá)國(guó)家開始在其他工業(yè)生產(chǎn)中也大量采用機(jī)器人作業(yè)。

后來,機(jī)器人朝著越來越智能化的方向發(fā)展,這種機(jī)器人帶有多種傳感器,能夠?qū)⒍喾N傳感器得到的信息進(jìn)行融合,能夠有效地適應(yīng)變化的環(huán)境,具有很強(qiáng)的自適應(yīng)能力、學(xué)習(xí)能力和自治功能。

智能機(jī)器人的發(fā)展主要經(jīng)歷了三個(gè)階段,分別是可編程試教、再現(xiàn)型機(jī)器人,有感知能力和自適應(yīng)能力的機(jī)器人,智能機(jī)器人。其中所涉及到的關(guān)鍵技術(shù)有多傳感器信息融合、導(dǎo)航與定位、路徑規(guī)劃、機(jī)器人視覺智能控制和人機(jī)接口技術(shù)等。

進(jìn)入21世紀(jì),隨著勞動(dòng)力成本的不斷提高、技術(shù)的不斷進(jìn)步,各國(guó)陸續(xù)進(jìn)行制造業(yè)的轉(zhuǎn)型與升級(jí),出現(xiàn)了機(jī)器人替代人的熱潮。同時(shí),人工智能發(fā)展日新月異,服務(wù)機(jī)器人也開始走進(jìn)普通家庭的生活。

世界上許多機(jī)器人科技公司都在大力發(fā)展機(jī)器人技術(shù),機(jī)器人的特質(zhì)與有機(jī)生命越來越接近。最近,波士頓動(dòng)力公司在機(jī)器人領(lǐng)域的成就已經(jīng)成為人們的焦點(diǎn),其產(chǎn)品機(jī)器狗Spot和雙足人形機(jī)器人Atlas都讓人大為驚嘆。Spot的功能十分先進(jìn),可以前往你告訴它要去的目的地,避開障礙,并在極端情況下保持平衡。Spot還可以背負(fù)多達(dá)四個(gè)硬件模塊,為公司提供其他多款機(jī)器人完成特定工作所需的任何技能;Atlas已經(jīng)掌握了倒立、360度翻轉(zhuǎn)、旋轉(zhuǎn)等多項(xiàng)技能,繼表演跑酷、后空翻等絕技之后,Atlas又掌握了一項(xiàng)新技能——體操,再次讓人們大開眼界。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器人
    +關(guān)注

    關(guān)注

    213

    文章

    30565

    瀏覽量

    219333
  • 圖像
    +關(guān)注

    關(guān)注

    2

    文章

    1095

    瀏覽量

    42147
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5589

    瀏覽量

    123884
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    瑞薩電子MCU/MPU產(chǎn)品助力AIoT設(shè)計(jì)

    人工智能(Artificial Intelligence,AI)是一門機(jī)器進(jìn)行感知、理解、推理和學(xué)習(xí)的技術(shù),核心的實(shí)現(xiàn)方式是機(jī)器學(xué)習(xí)深度
    的頭像 發(fā)表于 12-02 14:18 ?321次閱讀
    瑞薩電子MCU/MPU產(chǎn)品助力AIoT設(shè)計(jì)

    西安光機(jī)所智能光譜環(huán)境感知研究取得重要突破

    Index 收錄,5-Year IF: 11.7),并入選封面論文。論文第一作者為劉嘉誠(chéng),通信作者為于濤和胡炳樑,西安光機(jī)所是第一完成單位和通信單位。這是西安光機(jī)所首次在該期刊發(fā)表文章,標(biāo)志著研究所在智能光譜環(huán)境感知領(lǐng)域的研究在國(guó)際學(xué)術(shù)領(lǐng)域取得了新
    的頭像 發(fā)表于 10-11 09:29 ?194次閱讀
    西安光機(jī)所智能光譜環(huán)境<b class='flag-5'>感知</b>研究<b class='flag-5'>取得</b>重要<b class='flag-5'>突破</b>

    VoNR語音感知端到端優(yōu)化方案

    自2022年VoNR正式商用以來,用戶數(shù)快速增長(zhǎng),截止2024年初,5G語音用戶中VoNR占比超過80%,EPS Fallback占比已不足20%。隨著VoNR用戶數(shù)增加,語音用戶感知對(duì)運(yùn)營(yíng)商口碑影響越來越大,VoNR
    的頭像 發(fā)表于 09-24 10:22 ?858次閱讀
    VoNR<b class='flag-5'>語音感知</b>端到端優(yōu)化方案

    深度學(xué)習(xí)+多維感知!AI技術(shù)突破智能戒指邊界

    的功能邊界,通過AI算法的深度賦能,實(shí)現(xiàn)了從被動(dòng)監(jiān)測(cè)到主動(dòng)洞察、從基礎(chǔ)功能到創(chuàng)新交互的跨越。 ? 多維感知+算法賦能:AI重構(gòu)健康監(jiān)測(cè)體系 在健康領(lǐng)域,AI技術(shù)智能戒指從“數(shù)據(jù)采集”邁向了“智能分析”。9月4日,追覓發(fā)布的全球
    的頭像 發(fā)表于 09-07 03:23 ?8141次閱讀

    再掀語音交互革命,廣和通AI解決方案加速機(jī)器人聽覺進(jìn)化

    在機(jī)器人世界里,感知是智能化的第一步,是機(jī)器人獲取環(huán)境信息,學(xué)習(xí)適應(yīng)并自主決策的前提。聽覺作為五感之一,深度融合AI,可幫助機(jī)器人實(shí)現(xiàn)高效感知、數(shù)據(jù)獲取、
    的頭像 發(fā)表于 08-26 17:44 ?607次閱讀

    深度學(xué)習(xí)對(duì)工業(yè)物聯(lián)網(wǎng)有哪些幫助

    深度學(xué)習(xí)作為人工智能的核心分支,通過模擬人腦神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu),能夠自動(dòng)從海量工業(yè)數(shù)據(jù)中提取復(fù)雜特征,為工業(yè)物聯(lián)網(wǎng)(IIoT)提供了從數(shù)據(jù)感知到智能決策的全鏈路升級(jí)能力。以下從技術(shù)賦能、場(chǎng)景
    的頭像 發(fā)表于 08-20 14:56 ?744次閱讀

    自動(dòng)駕駛中Transformer大模型會(huì)取代深度學(xué)習(xí)嗎?

    持續(xù)討論。特別是在自動(dòng)駕駛領(lǐng)域,部分廠商開始嘗試將多模態(tài)大模型(MLLM)引入到感知、規(guī)劃與決策系統(tǒng),引發(fā)了“傳統(tǒng)深度學(xué)習(xí)是否已過時(shí)”的激烈爭(zhēng)論。然而,從技術(shù)原理、算力成本、安全需求與實(shí)際落地路徑
    的頭像 發(fā)表于 08-13 09:15 ?3897次閱讀
    自動(dòng)駕駛中Transformer大模型會(huì)取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    當(dāng)深度學(xué)習(xí)遇上嵌入式資源困境,特征空間如何破局?

    近年來,隨著人工智能(AI)技術(shù)的迅猛發(fā)展,深度學(xué)習(xí)(Deep Learning)成為最熱門的研究領(lǐng)域之一。在語音識(shí)別、圖像識(shí)別、自然語言處理
    發(fā)表于 07-14 14:50 ?1106次閱讀
    當(dāng)<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>遇上嵌入式資源困境,特征空間如何破局?

    深度感知的應(yīng)用和主要方法

    近年來,3D 感知技術(shù)越來越多地應(yīng)用于各行各業(yè),尤其是工業(yè)自動(dòng)化、機(jī)器人、自動(dòng)駕駛、醫(yī)療保健、AR/VR 和安全領(lǐng)域。3D 感知是用于捕捉環(huán)境與物體三維形狀并進(jìn)行數(shù)字化處理的技術(shù)的統(tǒng)稱,而深度
    的頭像 發(fā)表于 05-15 17:17 ?883次閱讀

    廠家芯資訊|WTK6900系列語音識(shí)別芯片自學(xué)習(xí)功能深度答疑

    在智能硬件全面擁抱語音交互的時(shí)代,廣州唯創(chuàng)電子WTK6900系列芯片憑借其獨(dú)特的離線自學(xué)習(xí)能力,已成為智能家居、工業(yè)控制領(lǐng)域的核心交互模塊。本文針對(duì)實(shí)際應(yīng)用中的高頻問題,深度解析故障
    的頭像 發(fā)表于 03-20 09:13 ?638次閱讀
    廠家芯資訊|WTK6900系列<b class='flag-5'>語音</b>識(shí)別芯片自<b class='flag-5'>學(xué)習(xí)</b>功能<b class='flag-5'>深度</b>答疑

    芯資訊|WTK6900系列語音識(shí)別芯片IC自學(xué)習(xí)功能解析

    在人工智能與物聯(lián)網(wǎng)技術(shù)深度融合的今天,離線語音識(shí)別技術(shù)憑借其隱私安全、即時(shí)響應(yīng)優(yōu)勢(shì),正在智能家居、工業(yè)控制領(lǐng)域快速普及。廣州唯創(chuàng)電子推出的WTK6900系列
    的頭像 發(fā)表于 03-20 08:52 ?729次閱讀
    芯資訊|WTK6900系列<b class='flag-5'>語音</b>識(shí)別芯片IC自<b class='flag-5'>學(xué)習(xí)</b>功能解析

    【AIBOX 應(yīng)用案例】單目深度估計(jì)

    ?Firefly所推出的NVIDIA系列的AIBOX可實(shí)現(xiàn)深度估計(jì),該技術(shù)是一種從單張或者多張圖像預(yù)測(cè)場(chǎng)景深度信息的技術(shù),廣泛應(yīng)用于計(jì)算機(jī)視覺領(lǐng)域,尤其是在三維重建、場(chǎng)景理解和環(huán)境感知
    的頭像 發(fā)表于 03-19 16:33 ?866次閱讀
    【AIBOX 應(yīng)用案例】單目<b class='flag-5'>深度</b>估計(jì)

    靈汐科技開源深度學(xué)習(xí)應(yīng)用開發(fā)平臺(tái)BIDL

    富案例問題,一直制約著其廣泛應(yīng)用。為了突破這一瓶頸,靈汐科技聯(lián)合腦啟社區(qū)正式宣布開源深度學(xué)習(xí)應(yīng)用開發(fā)平臺(tái)BIDL(Brain-insp
    的頭像 發(fā)表于 03-05 09:13 ?1461次閱讀
    靈汐科技開源<b class='flag-5'>類</b>腦<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>應(yīng)用開發(fā)平臺(tái)BIDL

    思必馳天琴語音助手8.0深度融合DeepSeek

    能座艙的交互邏輯,使其在車載語音交互領(lǐng)域成為多模態(tài)感知、人推理與群體協(xié)同的車載AI中樞,成為用戶更人性化、更主動(dòng)的智能出行伙伴。
    的頭像 發(fā)表于 02-28 17:43 ?2283次閱讀

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】2.具身智能機(jī)器人的基礎(chǔ)模塊

    目前高速發(fā)展的大模型能給具身智能帶來一些突破性的進(jìn)展。 對(duì)于感知系統(tǒng),要做的主要任務(wù)是物體檢測(cè),語義分割,立體視覺,鳥瞰視角感知。 有很多算法都可以實(shí)現(xiàn)物體檢測(cè),比如文章提到的HOG + SVM算法
    發(fā)表于 01-04 19:22