chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Explainable AI旨在提高機(jī)器學(xué)習(xí)模型的可解釋性

倩倩 ? 來(lái)源:互聯(lián)網(wǎng)分析沙龍 ? 2020-03-24 15:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Google LLC 在其云平臺(tái)上推出了一項(xiàng)新的“ 可解釋AI ”服務(wù),旨在使機(jī)器學(xué)習(xí)模型做出決策的過(guò)程更加透明。

谷歌表示,這樣做的想法是,這將有助于建立對(duì)這些模型的更大信任。這很重要,因?yàn)榇蠖鄶?shù)現(xiàn)有模型往往相當(dāng)不透明。只是不清楚他們?nèi)绾巫龀鰶Q定。

Google Cloud AI戰(zhàn)略總監(jiān)Tracy Frey在 今天的博客中解釋說(shuō),Explainable AI旨在提高機(jī)器學(xué)習(xí)模型的可解釋性。她說(shuō),這項(xiàng)新服務(wù)的工作原理是量化每個(gè)數(shù)據(jù)因素對(duì)模型產(chǎn)生的結(jié)果的貢獻(xiàn),幫助用戶了解其做出決定的原因。

換句話說(shuō),它不會(huì)以通俗易懂的方式來(lái)解釋事物,但是該分析對(duì)于首先構(gòu)建機(jī)器學(xué)習(xí)模型的數(shù)據(jù)科學(xué)家和開(kāi)發(fā)人員仍然有用。

可解釋的AI有進(jìn)一步的局限性,因?yàn)樗岢龅娜魏谓忉尪紝⑷Q于機(jī)器學(xué)習(xí)模型的性質(zhì)以及用于訓(xùn)練它的數(shù)據(jù)。

她寫(xiě)道:“任何解釋方法都有局限性?!?“一方面,AI解釋反映了數(shù)據(jù)中發(fā)現(xiàn)的模型的模式,但它們并未揭示數(shù)據(jù)樣本,總體或應(yīng)用程序中的任何基本關(guān)系。我們正在努力為客戶提供最直接,最有用的解釋方法,同時(shí)保持其局限性透明。”

但是,可解釋的AI可能很重要,因?yàn)闇?zhǔn)確解釋特定機(jī)器學(xué)習(xí)模型為何得出結(jié)論的原因?qū)τ诮M織內(nèi)的高級(jí)管理人員很有用,他們最終負(fù)責(zé)這些決策。對(duì)于高度嚴(yán)格的行業(yè)來(lái)說(shuō),這尤其重要,而信心絕對(duì)至關(guān)重要。谷歌表示,對(duì)于處于這一位置的許多組織而言,目前沒(méi)有任何可解釋性的人工智能已經(jīng)超出范圍。

在相關(guān)新聞中,Google還發(fā)布了所謂的“模型卡”,作為其Cloud Vision應(yīng)用程序編程界面的面部檢測(cè)和對(duì)象檢測(cè)功能的文檔。

這些模型卡詳細(xì)說(shuō)明了這些預(yù)先訓(xùn)練的機(jī)器學(xué)習(xí)模型的性能特征,并提供了有關(guān)其性能和限制的實(shí)用信息。谷歌表示,其目的是幫助開(kāi)發(fā)人員就使用哪種模型以及如何負(fù)責(zé)任地部署它們做出更明智的決定。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 谷歌
    +關(guān)注

    關(guān)注

    27

    文章

    6238

    瀏覽量

    109822
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8528

    瀏覽量

    135861
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+AI的科學(xué)應(yīng)用

    配備科學(xué)發(fā)現(xiàn)仍需人類的直覺(jué)和靈感 ④正價(jià)可解釋性和透明 ⑤解決倫理和道德問(wèn)題六、AI芯片用于“AI科學(xué)家”系統(tǒng) AI芯片的作用:七、用量子
    發(fā)表于 09-17 11:45

    模型在半導(dǎo)體行業(yè)的應(yīng)用可行分析

    有沒(méi)有這樣的半導(dǎo)體專用大模型,能縮短芯片設(shè)計(jì)時(shí)間,提高成功率,還能幫助新工程師更快上手?;蛘哕浻布梢栽谠O(shè)計(jì)和制造環(huán)節(jié)確實(shí)有實(shí)際應(yīng)用。會(huì)不會(huì)存在AI缺陷檢測(cè)。 能否應(yīng)用在工藝優(yōu)化和預(yù)測(cè)
    發(fā)表于 06-24 15:10

    中國(guó)科學(xué)院西安光機(jī)所在計(jì)算成像可解釋性深度學(xué)習(xí)重建方法取得進(jìn)展

    圖1 MDFP-Net網(wǎng)絡(luò)結(jié)構(gòu) 近日,中國(guó)科學(xué)院西安光機(jī)所空間光學(xué)技術(shù)研究室在計(jì)算成像可解釋性深度學(xué)習(xí)重建方法研究取得創(chuàng)新進(jìn)展。相關(guān)研究成果發(fā)表于計(jì)算機(jī)視覺(jué)與圖形學(xué)領(lǐng)域國(guó)際著名期刊
    的頭像 發(fā)表于 06-09 09:27 ?408次閱讀
    中國(guó)科學(xué)院西安光機(jī)所在計(jì)算成像<b class='flag-5'>可解釋性</b>深度<b class='flag-5'>學(xué)習(xí)</b>重建方法取得進(jìn)展

    算法進(jìn)化論:從參數(shù)剪枝到意識(shí)解碼的 AI 革命

    電子發(fā)燒友網(wǎng)報(bào)道(文 / 李彎彎)在人工智能領(lǐng)域,算法創(chuàng)新無(wú)疑是推動(dòng)技術(shù)持續(xù)前行的核心動(dòng)力源泉。近些年來(lái),隨著深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等前沿技術(shù)相繼取得重大突破,AI 算法在效率提升、可解釋性
    的頭像 發(fā)表于 04-19 00:38 ?2032次閱讀

    AI模型在汽車應(yīng)用中的推理、降本與可解釋性研究

    佐思汽研發(fā)布《2024-2025年AI模型及其在汽車領(lǐng)域的應(yīng)用研究報(bào)告》。 推理能力成為大模型性能提升的驅(qū)動(dòng)引擎 2024下半年以來(lái),國(guó)內(nèi)外大模型公司紛紛推出推理
    的頭像 發(fā)表于 02-18 15:02 ?1622次閱讀
    <b class='flag-5'>AI</b>大<b class='flag-5'>模型</b>在汽車應(yīng)用中的推理、降本與<b class='flag-5'>可解釋性</b>研究

    了解DeepSeek-V3 和 DeepSeek-R1兩個(gè)大模型的不同定位和應(yīng)用選擇

    ) 擴(kuò)展上下文+結(jié)構(gòu)化推理(支持更長(zhǎng)復(fù)雜輸入) 響應(yīng)控制 通用流暢優(yōu)先 強(qiáng)化分步解釋與中間過(guò)程可解釋性 3. 技術(shù)架構(gòu)差異 技術(shù)點(diǎn) DeepSeek-V3 DeepSeek-R1 訓(xùn)練數(shù)據(jù) 通用語(yǔ)料+部分
    發(fā)表于 02-14 02:08

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器
    的頭像 發(fā)表于 02-13 09:39 ?514次閱讀

    小白學(xué)解釋性AI:從機(jī)器學(xué)習(xí)到大模型

    科學(xué)AI需要可解釋性人工智能的崛起,尤其是深度學(xué)習(xí)的發(fā)展,在眾多領(lǐng)域帶來(lái)了令人矚目的進(jìn)步。然而,伴隨這些進(jìn)步而來(lái)的是一個(gè)關(guān)鍵問(wèn)題——“黑箱”問(wèn)題。許多人工智能模型,特別是復(fù)雜的
    的頭像 發(fā)表于 02-10 12:12 ?930次閱讀
    小白學(xué)<b class='flag-5'>解釋性</b><b class='flag-5'>AI</b>:從<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>到大<b class='flag-5'>模型</b>

    AI模型思維鏈功能升級(jí),提升透明度與可信度

    的透明度。 值得注意的是,此次更新發(fā)生在DeepSeek-R1推理模型發(fā)布之后。作為OpenAI的競(jìng)爭(zhēng)對(duì)手,DeepSeek-R1同樣具備展示其反應(yīng)背后思維過(guò)程的能力。兩大模型在這一功能上的不謀而合,無(wú)疑彰顯了AI領(lǐng)域?qū)τ谔嵘龥Q
    的頭像 發(fā)表于 02-10 09:06 ?698次閱讀

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    設(shè)計(jì)專門(mén)的編碼器處理視覺(jué)、觸覺(jué)、位置等不同類型的傳感器數(shù)據(jù),再用cross-attention機(jī)制將它們對(duì)齊到同一語(yǔ)義空間。這種設(shè)計(jì)不僅提高模型的感知能力,還增強(qiáng)了推理過(guò)程的可解釋性。在實(shí)驗(yàn)中,RT-1
    發(fā)表于 12-24 15:03

    深度學(xué)習(xí)模型的魯棒優(yōu)化

    深度學(xué)習(xí)模型的魯棒優(yōu)化是一個(gè)復(fù)雜但至關(guān)重要的任務(wù),它涉及多個(gè)方面的技術(shù)和策略。以下是一些關(guān)鍵的優(yōu)化方法: 一、數(shù)據(jù)預(yù)處理與增強(qiáng) 數(shù)據(jù)清洗 :去除數(shù)據(jù)中的噪聲和異常值,這是提高
    的頭像 發(fā)表于 11-11 10:25 ?1797次閱讀

    魯棒機(jī)器學(xué)習(xí)中的重要

    機(jī)器學(xué)習(xí)領(lǐng)域,模型的魯棒是指模型在面對(duì)輸入數(shù)據(jù)的擾動(dòng)、異常值、噪聲或?qū)剐怨魰r(shí),仍能保持性能的能力。隨著人工智能技術(shù)的快速發(fā)展,
    的頭像 發(fā)表于 11-11 10:19 ?1720次閱讀

    常見(jiàn)AI模型的比較與選擇指南

    在選擇AI模型時(shí),明確具體需求、了解模型的訓(xùn)練數(shù)據(jù)、計(jì)算資源要求和成本,并考慮模型可解釋性和社區(qū)支持情況等因素至關(guān)重要。以下是對(duì)常見(jiàn)
    的頭像 發(fā)表于 10-23 15:36 ?4203次閱讀

    AI模型與深度學(xué)習(xí)的關(guān)系

    人類的學(xué)習(xí)過(guò)程,實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識(shí)別。AI模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計(jì)算資源來(lái)進(jìn)行訓(xùn)練和推理。深度
    的頭像 發(fā)表于 10-23 15:25 ?3377次閱讀

    AI模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    AI模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個(gè)方面存在顯著的區(qū)別。以下是對(duì)這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI
    的頭像 發(fā)表于 10-23 15:01 ?3196次閱讀