chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Google發(fā)布新API,支持訓(xùn)練更小更快的AI模型

獨(dú)愛(ài)72H ? 來(lái)源:雷鋒網(wǎng) ? 作者:佚名 ? 2020-04-09 21:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

(文章來(lái)源:雷鋒網(wǎng))
Google發(fā)布了 Quantification Aware Training(QAT)API,使開(kāi)發(fā)人員可以利用量化的優(yōu)勢(shì)來(lái)訓(xùn)練和部署模型AI模型。通過(guò)這個(gè)API,可以將輸入值從大集合映射到較小集合的輸出,同時(shí),保持接近原始狀態(tài)的準(zhǔn)確性。

新的API的目標(biāo)是支持開(kāi)發(fā)更小、更快、更高效的機(jī)器學(xué)習(xí)(ML)模型,這些模型非常適合在現(xiàn)有的設(shè)備上運(yùn)行,例如那些計(jì)算資源非常寶貴的中小型企業(yè)環(huán)境中的設(shè)備。

通常,從較高精度到較低精度的過(guò)程有很多噪聲。因?yàn)榱炕研》秶母↑c(diǎn)數(shù)壓縮為固定數(shù)量的信息存儲(chǔ)區(qū)中,這導(dǎo)致信息損失,類似于將小數(shù)值表示為整數(shù)時(shí)的舍入誤差(例如,在范圍[2.0,2.3]中的所有值都可以在相同的存儲(chǔ)中表示。)。問(wèn)題在于,當(dāng)在多個(gè)計(jì)算中使用有損數(shù)時(shí),精度損失就會(huì)累積,這就需要為下一次計(jì)算重新標(biāo)度。

谷歌新發(fā)布的QAT API通過(guò)在AI模型訓(xùn)練過(guò)程中模擬低精度計(jì)算來(lái)解決此問(wèn)題。在整個(gè)訓(xùn)練過(guò)程中,將量化誤差作為噪聲引入,QAT API的算法會(huì)嘗試將誤差最小化,以便它學(xué)習(xí)這個(gè)過(guò)程中的變量,讓量化有更強(qiáng)的魯棒性。訓(xùn)練圖是利用了將浮點(diǎn)對(duì)象轉(zhuǎn)換為低精度值,然后再將低精度值轉(zhuǎn)換回浮點(diǎn)的操作,從而確保了在計(jì)算中引入了量化損失,并確保了進(jìn)一步的計(jì)算也可以模擬低精度。

谷歌在報(bào)告中給出的測(cè)試結(jié)果顯示,在開(kāi)源Imagenet數(shù)據(jù)集的圖像分類模型(MobilenetV1 224)上進(jìn)行測(cè)試,結(jié)果顯示未經(jīng)量化的精度為71.03%,量化后的精度達(dá)到了71.06%。

Google發(fā)布新API,支持訓(xùn)練更小更快的AI模型

針對(duì)相同數(shù)據(jù)集測(cè)試的另一種分類模型(Nasnet-Mobile)中測(cè)試,在量化后僅有1%的精度損失(74%至73%)。除了模擬精度降低的計(jì)算外,QAT API還負(fù)責(zé)記錄必要的統(tǒng)計(jì)信息,以量化訓(xùn)練整個(gè)模型或模型的一部分。比如,這可以使開(kāi)發(fā)人員能夠通過(guò)調(diào)用模型訓(xùn)練API將模型轉(zhuǎn)換為量化的TensorFlow Lite模型?;蛘撸_(kāi)發(fā)人員可以在模擬量化如何影響不同硬件后端的準(zhǔn)確性的同時(shí)嘗試各種量化策略。

Google發(fā)布新API,支持訓(xùn)練更小更快的AI模型

Google表示,在默認(rèn)情況下,作為TensorFlow模型優(yōu)化工具包一部分的QAT API配置為與TensorFlow Lite中提供的量化執(zhí)行支持一起使用,TensorFlow Lite是Google的工具集,旨在將其TensorFlow機(jī)器學(xué)習(xí)框架上構(gòu)建的模型能夠適應(yīng)于移動(dòng)設(shè)備,嵌入式物聯(lián)網(wǎng)設(shè)備。“我們很高興看到QAT API如何進(jìn)一步使TensorFlow用戶在其支持TensorFlow Lite的產(chǎn)品中突破有效執(zhí)行的界限,以及它如何為研究新的量化算法和進(jìn)一步開(kāi)發(fā)具有不同精度特性的新硬件平臺(tái)打開(kāi)大門(mén)”,Google在博客中寫(xiě)道。

QAT API的正式發(fā)布是在TensorFlow Dev Summit上,也是在發(fā)布了用于訓(xùn)練量子模型的機(jī)器學(xué)習(xí)框架TensorFlow Quantum之后發(fā)布。谷歌也在會(huì)議的會(huì)話中預(yù)覽了QAT API。
(責(zé)任編輯:fqj)

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 谷歌
    +關(guān)注

    關(guān)注

    27

    文章

    6249

    瀏覽量

    110719
  • API
    API
    +關(guān)注

    關(guān)注

    2

    文章

    2283

    瀏覽量

    66531
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何評(píng)價(jià)OpenRouter這樣的大模型API聚合平臺(tái)?

    我個(gè)人認(rèn)為OpenRouter的商業(yè)模式特別優(yōu)雅,大模型時(shí)代的輕資產(chǎn) “賣水人”。 open router自己不訓(xùn)練模型,也不買(mǎi)顯卡推理,他做的就是調(diào)用別家的API,聚合了各家的
    的頭像 發(fā)表于 10-28 10:04 ?303次閱讀

    ai_cube訓(xùn)練模型最后部署失敗是什么原因?

    ai_cube訓(xùn)練模型最后部署失敗是什么原因?文件保存路徑里也沒(méi)有中文 查看AICube/AI_Cube.log,看看報(bào)什么錯(cuò)?
    發(fā)表于 07-30 08:15

    摩爾線程“AI工廠”:五大核心技術(shù)支撐,打造大模型訓(xùn)練超級(jí)工廠

    演講中表示,為應(yīng)對(duì)生成式AI爆發(fā)式增長(zhǎng)下的大模型訓(xùn)練效率瓶頸,摩爾線程將通過(guò)系統(tǒng)級(jí)工程創(chuàng)新,構(gòu)建新一代AI訓(xùn)練基礎(chǔ)設(shè)施,致力于為AGI時(shí)代打
    的頭像 發(fā)表于 07-28 11:28 ?4367次閱讀
    摩爾線程“<b class='flag-5'>AI</b>工廠”:五大核心技術(shù)支撐,打造大<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>超級(jí)工廠

    超低延時(shí)重構(gòu)AI推理體驗(yàn)!白山云發(fā)布“大模型API”產(chǎn)品

    白山云科技正式發(fā)布“大模型API”產(chǎn)品,首發(fā)上線DeepSeek-R1-0528、DeepSeek-R1-0528-Qwen3-8B、Qwen3-32B-FP8等大語(yǔ)言模型?;诎咨饺?/div>
    的頭像 發(fā)表于 07-02 17:26 ?1066次閱讀
    超低延時(shí)重構(gòu)<b class='flag-5'>AI</b>推理體驗(yàn)!白山云<b class='flag-5'>發(fā)布</b>“大<b class='flag-5'>模型</b><b class='flag-5'>API</b>”產(chǎn)品

    群暉發(fā)布AI模型全流程存儲(chǔ)解決方案,破局訓(xùn)練效率與數(shù)據(jù)孤島難題

    兼容數(shù)據(jù)歸集、高速訓(xùn)練、高可用部署全場(chǎng)景,支持?Llama2?等千億參數(shù)模型,讀寫(xiě)效率提升?90% 上海?2025年6月24日?/美通社/ -- 當(dāng)算力狂奔時(shí),數(shù)據(jù)存儲(chǔ)正成為AI進(jìn)化的
    的頭像 發(fā)表于 06-25 16:03 ?617次閱讀
    群暉<b class='flag-5'>發(fā)布</b><b class='flag-5'>AI</b><b class='flag-5'>模型</b>全流程存儲(chǔ)解決方案,破局<b class='flag-5'>訓(xùn)練</b>效率與數(shù)據(jù)孤島難題

    Gemini API集成Google圖像生成模型Imagen 3

    開(kāi)發(fā)者現(xiàn)在可以通過(guò) Gemini API 訪問(wèn) Google 最先進(jìn)的圖像生成模型 Imagen 3。該模型最初僅對(duì)付費(fèi)用戶開(kāi)放,不久后也將面向免費(fèi)用戶推出。
    的頭像 發(fā)表于 05-14 16:53 ?1098次閱讀

    海思SD3403邊緣計(jì)算AI數(shù)據(jù)訓(xùn)練概述

    模型,將模型轉(zhuǎn)化為嵌入式AI模型,模型升級(jí)AI攝像機(jī),進(jìn)行
    發(fā)表于 04-28 11:11

    Deepseek海思SD3403邊緣計(jì)算AI產(chǎn)品系統(tǒng)

    海思SD3403邊緣計(jì)算AI框架,提供了一套開(kāi)放式AI訓(xùn)練產(chǎn)品工具包,解決客戶低成本AI系統(tǒng),針對(duì)差異化AI 應(yīng)用場(chǎng)景,自己采集樣本數(shù)據(jù),進(jìn)
    發(fā)表于 04-28 11:05

    首創(chuàng)開(kāi)源架構(gòu),天璣AI開(kāi)發(fā)套件讓端側(cè)AI模型接入得心應(yīng)手

    ,聯(lián)發(fā)科帶來(lái)了全面升級(jí)的天璣AI開(kāi)發(fā)套件2.0,在模型庫(kù)規(guī)模、架構(gòu)開(kāi)放程度、前沿端側(cè)AI技術(shù)支持和端側(cè)LoRA訓(xùn)練落地等方面均迎來(lái)全面躍遷,
    發(fā)表于 04-13 19:52

    請(qǐng)問(wèn)如何在imx8mplus上部署和運(yùn)行YOLOv5訓(xùn)練模型?

    。我在 yo tflite 中轉(zhuǎn)換模型并嘗試在 tensorflow 腳本上運(yùn)行模型,但它不起作用。 如何在 imx8mplus 上運(yùn)行 YOLOv5 模型? 在 imx8mplus 上運(yùn)行任何其他對(duì)象檢測(cè)
    發(fā)表于 03-25 07:23

    利用RAKsmart服務(wù)器托管AI模型訓(xùn)練的優(yōu)勢(shì)

    AI模型訓(xùn)練需要強(qiáng)大的計(jì)算資源、高效的存儲(chǔ)和穩(wěn)定的網(wǎng)絡(luò)支持,這對(duì)服務(wù)器的性能提出了較高要求。而RAKsmart服務(wù)器憑借其核心優(yōu)勢(shì),成為托管AI
    的頭像 發(fā)表于 03-18 10:08 ?609次閱讀

    Google發(fā)布最新AI模型Gemma 3

    Gemma 開(kāi)放模型系列是 Google 推動(dòng)實(shí)用 AI 技術(shù)普惠大眾的重要基石。上個(gè)月,Gemma 迎來(lái)了首個(gè)生日?;赝^(guò)去一年,其成果斐然:全球下載量突破 1 億,社區(qū)欣欣向榮,衍生模型
    的頭像 發(fā)表于 03-18 09:51 ?1595次閱讀

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功怎么處理?

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功咋辦,試了好幾個(gè)模型壓縮了也不行,ram占用過(guò)大,有無(wú)解決方案?
    發(fā)表于 03-11 07:18

    無(wú)法轉(zhuǎn)換TF OD API掩碼RPGA模型怎么辦?

    無(wú)法轉(zhuǎn)換重新訓(xùn)練的 TF OD API 掩碼 RPGA 模型,該模型使用以下命令在 GPU 上工作: mo > --saved_model_dir
    發(fā)表于 03-06 06:44

    小豆包APIAI最新大模型,新增GPT-4.5-Preview,對(duì)比官方優(yōu)惠60%

    小豆包API是國(guó)內(nèi)知名的AI中轉(zhuǎn)平臺(tái),它通過(guò)聚合市面上主流的大模型,為用戶提供了一個(gè)便捷的API接口,讓開(kāi)發(fā)者能夠輕松集成AI能力到自己的應(yīng)
    的頭像 發(fā)表于 02-28 11:36 ?1315次閱讀
    小豆包<b class='flag-5'>API</b>:<b class='flag-5'>AI</b>最新大<b class='flag-5'>模型</b>,新增GPT-4.5-Preview,對(duì)比官方優(yōu)惠60%