chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡 物體檢測 YOLOv2

倩倩 ? 來源:三姐的哥 ? 2020-04-17 15:51 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

繼2015的YOLO后,2016年作者對YOLO升級到YOLO2,另外一個版本YOLO9000是基于wordtree跨數(shù)據(jù)集達到檢測9000個分類,卷積層模型稱為darknet-19,達到速度和效果的雙提升,文章里充滿了作者的自豪,也值得自豪;

作者正視了YOLO的兩個大問題:回歸框不精準和召回不夠;一般的解決思路都是把網(wǎng)絡加深加寬,不過本文不屑,作者反而要通過優(yōu)化網(wǎng)絡學習在準確率不降的情況下提升精度和召回!

升級點

Batch Normalization:每個卷積層加了BN,正則都不要了,droupout也省了,過擬合也沒了,效果還好了,+2%mAP;

High Resolution Classifier - 高分辨率分類:模型訓練時經(jīng)典做法都是先在ImageNet上pre-train,然而ImageNet上的圖片是低分辨率小于256*256的,而要檢測的圖片是高分辨率448*448的,這樣模型需要同時在高分辨的圖片上做fine-tune和檢測,所以作者提出了三步驟 1) 在ImageNet低分辨率上pre-train;2) 在高分辨率數(shù)據(jù)集上fine-tune;3) 在高分辨率數(shù)據(jù)集上檢測;使得模型更容易學習,+4%mAP

Convolution with Anchor Boxer - 加Anchor機制:YOLO是通過最后的全連接層直接預估絕對坐標,而FasterRCNN是通過卷積層預估相對坐標,作者認為這樣更容易學習,因此YOLOv2去掉了全連接層,在最后一層卷積層下采樣后用Anchor,yolo有7*7*2 = 98個框,而YOLOv2有超過1k的anchor,最終效果上雖然mAP略有下降3個千分點,但是召回提升7個百分點,值了!

Dimension Clusters - 維度聚類: Anchor的尺寸faster rcnn里人工選定的,YOLOv2通過k-mean聚類的方法,將訓練數(shù)據(jù)里gt的框進行聚類,注意這里不能直接用歐式距離,大框會比小框影響大,我們的目標是IOU,因此距離為: d(box, centroid) = 1 IOU(box, centroid);下圖是結果,左圖是k和IOU的trand-off,右圖是5個中心的框尺寸,明顯看出和人工指定的差異很大;

Direct location prediction - 直接預測位置:直接預測x,y會導致模型訓練不穩(wěn)定,本文預測如下tx,ty,tw,th,to,通過sigmolid歸一化到(0,1),結合dimension clusters,+5%mAP

Fine-Grained Freture - 細粒度特征:引入passthrough layer,將低維度特征傳遞給高維度,類似于resnet的shortcut,+1%mAP;

Multi-Scale Training - 多尺度訓練:這里的多尺度是圖片的尺寸,多了迫使模型適應更大范圍的尺寸,每隔一定的epoch就強制改變輸入圖片的尺寸;

效果

如下是在VOC數(shù)據(jù)集上效率(每秒處理幀數(shù))和效果(mAP)空間里不同算法的變現(xiàn),其中YOLOv2為藍色,有不同的trade-off,效率和效果都超過已有的方法;

如下是更多的實驗結果:

如下是COCO上的效果,看得出COCO數(shù)據(jù)集還是很難的,小物體上YOLO2依然是差一些;

YOLO9000: Better, Faster, Stronger

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4743

    瀏覽量

    96832
  • 數(shù)據(jù)集

    關注

    4

    文章

    1229

    瀏覽量

    25949
  • voc
    voc
    +關注

    關注

    0

    文章

    110

    瀏覽量

    16062
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗

    構建卷積神經(jīng)網(wǎng)絡模型 model = models.Sequential()model.add(layers.Conv2D(input_shape=(28, 28, 1), filters=4
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡部署相關操作

    讀取。接下來需要使用擴展指令,完成神經(jīng)網(wǎng)絡的部署,此處僅對第一層卷積+池化的部署進行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權重數(shù)據(jù)、輸入數(shù)據(jù)導入硬件加速器內(nèi)。對于權重
    發(fā)表于 10-20 08:00

    卷積神經(jīng)網(wǎng)絡如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    無刷電機小波神經(jīng)網(wǎng)絡轉(zhuǎn)子位置檢測方法的研究

    MATLAB/SIMULINK工具對該方法進行驗證,實驗結果表明該方法在全程速度下效果良好。 純分享帖,點擊下方附件免費獲取完整資料~~~ *附件:無刷電機小波神經(jīng)網(wǎng)絡轉(zhuǎn)子位置檢測方法的研究.pdf
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1062次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工神經(jīng)網(wǎng)絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1817次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發(fā)展,多種實現(xiàn)工具和框架應運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?951次閱讀

    卷積神經(jīng)網(wǎng)絡的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡因其在處理具有空間層次結構的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設置。參數(shù)調(diào)整是一個復雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡架構參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1656次閱讀

    使用卷積神經(jīng)網(wǎng)絡進行圖像分類的步驟

    使用卷積神經(jīng)網(wǎng)絡(CNN)進行圖像分類是一個涉及多個步驟的過程。 1. 問題定義 確定目標 :明確你想要分類的圖像類型,例如貓和狗、不同的植物種類等。 數(shù)據(jù)需求 :確定需要多少數(shù)據(jù)以及數(shù)據(jù)的類型
    的頭像 發(fā)表于 11-15 15:01 ?1155次閱讀

    卷積神經(jīng)網(wǎng)絡在自然語言處理中的應用

    自然語言處理是人工智能領域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術的發(fā)展,卷積神經(jīng)網(wǎng)絡(CNNs)作為一種強大的模型,在圖像識別和語音處理等領域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?1068次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結構差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?2264次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:52 ?1094次閱讀

    卷積神經(jīng)網(wǎng)絡的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結構的前饋神經(jīng)網(wǎng)絡(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?2223次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    神經(jīng)網(wǎng)絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經(jīng)網(wǎng)絡的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1811次閱讀

    關于卷積神經(jīng)網(wǎng)絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56