chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

新研究允許大腦和人工神經(jīng)元進(jìn)行網(wǎng)絡(luò)鏈接

獨(dú)愛72H ? 來源:教育新聞網(wǎng) ? 作者:教育新聞網(wǎng) ? 2020-04-24 17:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

(文章來源:教育新聞網(wǎng))

刺突神經(jīng)元的回路使大腦功能成為可能,這些回路通過微觀但高度復(fù)雜的連接(稱為突觸)連接在一起。在這項(xiàng)發(fā)表在科學(xué)雜志《自然科學(xué)報(bào)告》上的新研究中,科學(xué)家們創(chuàng)建了一個(gè)混合神經(jīng)網(wǎng)絡(luò),世界上不同地區(qū)的生物和人工神經(jīng)元可以通過使用神經(jīng)網(wǎng)絡(luò)進(jìn)行的人工突觸樞紐在互聯(lián)網(wǎng)上相互交流。尖端的納米技術(shù)。這是這三個(gè)組件首次在統(tǒng)一網(wǎng)絡(luò)中融合在一起。

在研究過程中,意大利帕多瓦大學(xué)的研究人員在其實(shí)驗(yàn)室中培養(yǎng)了大鼠神經(jīng)元,而蘇黎世大學(xué)和蘇黎世聯(lián)邦理工學(xué)院的合作伙伴在硅微芯片上創(chuàng)建了人工神經(jīng)元。通過控制南安普敦大學(xué)開發(fā)的納米電子突觸的精心設(shè)置將虛擬實(shí)驗(yàn)室整合在一起。這些突觸設(shè)備被稱為憶阻器。

基于南安普敦的研究人員捕獲了從意大利的生物神經(jīng)元通過互聯(lián)網(wǎng)發(fā)送的尖峰事件,然后將其分發(fā)給憶阻突觸。然后以尖峰活動(dòng)的形式將響應(yīng)發(fā)送給蘇黎世的人工神經(jīng)元。該過程也同時(shí)反向進(jìn)行。從蘇黎世到帕多瓦。因此,人工和生物神經(jīng)元能夠雙向?qū)崟r(shí)通信。

南安普頓大學(xué)納米技術(shù)教授兼電子前沿中心主任Themis Prodromakis表示:“在進(jìn)行這種研究時(shí),在這一層面上,最大的挑戰(zhàn)之一就是整合了如此獨(dú)特的前沿技術(shù)和專業(yè)知識,通常位于一個(gè)屋頂下。通過創(chuàng)建虛擬實(shí)驗(yàn)室,我們能夠?qū)崿F(xiàn)這一目標(biāo)?!?/p>

現(xiàn)在,研究人員預(yù)計(jì)他們的方法將引起一系列科學(xué)學(xué)科的興趣,并加快神經(jīng)接口研究領(lǐng)域的創(chuàng)新和科學(xué)進(jìn)步的步伐。特別是,無縫連接全球不同技術(shù)的能力是朝著這些技術(shù)民主化邁出的一步,從而消除了合作的重大障礙。

Prodromakis教授補(bǔ)充說:“我們對這一新進(jìn)展感到非常興奮。一方面,它為自然進(jìn)化過程中從未遇到過的新場景奠定了基礎(chǔ),在該場景中,生物和人工神經(jīng)元相互連接并在全球網(wǎng)絡(luò)中進(jìn)行交流;為另一方面,它為神經(jīng)修復(fù)技術(shù)帶來了新的前景,為研究用AI芯片代替大腦功能異常的部分鋪平了道路?!?/p>

該研究由歐盟未來和新興技術(shù)計(jì)劃以及英國工程和物理科學(xué)研究委員會(huì)資助。Prodromakis教授還擔(dān)任皇家工程學(xué)院新興技術(shù)系主任,主要致力于開發(fā)節(jié)能型AI硬件解決方案。
(責(zé)任編輯:fqj)

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 互聯(lián)網(wǎng)
    +關(guān)注

    關(guān)注

    55

    文章

    11289

    瀏覽量

    108493
  • 神經(jīng)元
    +關(guān)注

    關(guān)注

    1

    文章

    368

    瀏覽量

    19060
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    脈沖神經(jīng)元模型的硬件實(shí)現(xiàn)

    時(shí),I_i等于1,否則 I_i等于0。當(dāng)膜電位超過閾值,神經(jīng)元發(fā)出脈沖,然后膜電位變?yōu)殪o息電位vrest,并且膜電位在一段時(shí)間內(nèi)不允許改變時(shí)間,稱為不應(yīng)期。如果膜電位沒有超過閾值,膜電位呈指數(shù)衰減直到為靜
    發(fā)表于 10-24 08:27

    SNN加速器內(nèi)部神經(jīng)元數(shù)據(jù)連接方式

    的數(shù)量級,而且生物軸突的延遲和神經(jīng)元的時(shí)間常數(shù)比數(shù)字電路的傳播和轉(zhuǎn)換延遲要大得多,AER 的工作方式和神經(jīng)網(wǎng)絡(luò)的特點(diǎn)相吻合,所以受生物啟發(fā)的神經(jīng)形態(tài)處理器中的NoC或SNN加速器通常使用AER協(xié)議來
    發(fā)表于 10-24 07:34

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    神經(jīng)元,但卻能產(chǎn)生復(fù)雜的行為。受此啟發(fā),與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)相比,LNN旨在通過模擬大腦神經(jīng)元之間的動(dòng)態(tài)連接來處理信息,這種網(wǎng)絡(luò)能夠順序處理數(shù)
    的頭像 發(fā)表于 09-28 10:03 ?404次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+神經(jīng)形態(tài)計(jì)算、類腦芯片

    : 基于JJ的超導(dǎo)神經(jīng)元和突觸: 2、半導(dǎo)體與超導(dǎo)體回合式神經(jīng)形態(tài)網(wǎng)絡(luò) 工作原理: 3、非超導(dǎo)低溫類腦芯片 (知識盲區(qū)了) 4、低溫AI類腦芯片的潛力 四、以樹突為中心的合成大腦 生物
    發(fā)表于 09-17 16:43

    新一代神經(jīng)擬態(tài)類腦計(jì)算機(jī)“悟空”發(fā)布,神經(jīng)元數(shù)量超20億

    擬態(tài)芯片的類腦計(jì)算機(jī),神經(jīng)元數(shù)量接近獼猴大腦規(guī)模,典型運(yùn)行狀態(tài)下功耗僅約2000瓦。傳統(tǒng)計(jì)算機(jī)處理人腦任務(wù)需高達(dá)100兆瓦功耗,相比之下“悟空”低功耗優(yōu)勢顯著。 ? ? 硬件上,“悟空”由15臺刀片式神經(jīng)擬態(tài)類腦服務(wù)器組成,每臺
    的頭像 發(fā)表于 08-06 07:57 ?7104次閱讀
    新一代<b class='flag-5'>神經(jīng)</b>擬態(tài)類腦計(jì)算機(jī)“悟空”發(fā)布,<b class='flag-5'>神經(jīng)元</b>數(shù)量超20億

    無刷直流電機(jī)單神經(jīng)元自適應(yīng)智能控制系統(tǒng)

    摘要:針對無刷直流電機(jī)(BLDCM)設(shè)計(jì)了一種可在線學(xué)習(xí)的單神經(jīng)元自適應(yīng)比例-積分-微分(PID)智能控制器,通過有監(jiān)督的 Hebb學(xué)習(xí)規(guī)則調(diào)整權(quán)值,每次采樣根據(jù)反饋誤差對神經(jīng)元權(quán)值進(jìn)行調(diào)整,以實(shí)現(xiàn)
    發(fā)表于 06-26 13:36

    無刷直流電機(jī)單神經(jīng)元PI控制器的設(shè)計(jì)

    摘要:研究了一種基于專家系統(tǒng)的單神經(jīng)元PI控制器,并將其應(yīng)用于無刷直流電機(jī)調(diào)速系統(tǒng)中??刂破鲗?shí)現(xiàn)了PI參數(shù)的在線調(diào)整,在具有PID控制器良好動(dòng)態(tài)性能的同時(shí),減少微分項(xiàng)對系統(tǒng)穩(wěn)態(tài)運(yùn)行時(shí)的影響,并較好
    發(fā)表于 06-26 13:34

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則

    ,僅作為數(shù)據(jù)輸入的接口。輸入層的神經(jīng)元個(gè)數(shù)通常與輸入數(shù)據(jù)的特征數(shù)量相對應(yīng)。 隱藏層 :對輸入信號進(jìn)行非線性變換,是神經(jīng)網(wǎng)絡(luò)的核心部分,負(fù)責(zé)學(xué)習(xí)輸入與輸出之間的復(fù)雜映射關(guān)系。隱藏層可以有一層或多層,層數(shù)和
    的頭像 發(fā)表于 02-12 16:41 ?1090次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?1081次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負(fù)責(zé)接收外部輸入數(shù)據(jù),這些數(shù)據(jù)隨后被傳遞到隱藏層。隱藏層是BP神經(jīng)網(wǎng)絡(luò)的核心部分,它可以通過一層或多層神經(jīng)元對輸入數(shù)據(jù)進(jìn)行加權(quán)求和,并通過非線性激活函數(shù)(如ReLU、sigmoid或tan
    的頭像 發(fā)表于 02-12 15:13 ?1344次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個(gè)階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型的步驟: 一、前向傳播 前向傳播
    的頭像 發(fā)表于 02-12 15:10 ?1259次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計(jì)的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為
    的頭像 發(fā)表于 01-09 10:24 ?1852次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    神經(jīng)網(wǎng)絡(luò),也稱為全連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),其特點(diǎn)是每一層的每個(gè)神經(jīng)元都與下一層的所有神經(jīng)元相連。這種結(jié)構(gòu)簡單直觀,但在
    的頭像 發(fā)表于 11-15 14:53 ?2291次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(前饋神經(jīng)網(wǎng)絡(luò)) 2.1 結(jié)構(gòu) 傳統(tǒng)神經(jīng)網(wǎng)絡(luò),通常指的是前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks, FNN),是一種最簡單的
    的頭像 發(fā)表于 11-15 09:42 ?1824次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識,或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?867次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101