chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)的七個注意事項

如意 ? 來源:CSDN ? 作者:呆呆的貓 ? 2020-08-24 16:09 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)注意事項

1)數(shù)據(jù)集的大小和分塊

數(shù)據(jù)驅(qū)動的模型一般依賴于數(shù)據(jù)集的大小,CNN和其他經(jīng)驗?zāi)P鸵粯?,能夠適用于任意大小的數(shù)據(jù)集,但用于訓(xùn)練的數(shù)據(jù)集應(yīng)該足夠大, 能夠覆蓋問題域中所有已知可能出現(xiàn)的問題,

設(shè)計CNN的時候,數(shù)據(jù)集應(yīng)該包含三個子集:訓(xùn)練集、測試集、驗證集

訓(xùn)練集:包含問題域中的所有數(shù)據(jù),并在訓(xùn)練階段用來調(diào)整網(wǎng)絡(luò)的權(quán)重

測試集:在訓(xùn)練的過程中用于測試網(wǎng)絡(luò)對訓(xùn)練集中未出現(xiàn)的數(shù)據(jù)的分類性能,根據(jù)網(wǎng)絡(luò)在測試集上的性能情況,網(wǎng)絡(luò)的結(jié)構(gòu)可能需要作出調(diào)整,或者增加訓(xùn)練循環(huán)次數(shù)。

驗證集:驗證集中的數(shù)據(jù)統(tǒng)一應(yīng)該包含在測試集和訓(xùn)練集中沒有出現(xiàn)過的數(shù)據(jù),用于在網(wǎng)絡(luò)確定之后能夠更好的測試和衡量網(wǎng)絡(luò)的性能

Looney等人建議,數(shù)據(jù)集中65%的用于訓(xùn)練,25%的用于測試,10%用于驗證

2)數(shù)據(jù)預(yù)處理

為了加速訓(xùn)練算法的收斂速度,一般都會采用一些數(shù)據(jù)預(yù)處理技術(shù),其中包括:去除噪聲、輸入數(shù)據(jù)降維、刪除無關(guān)數(shù)據(jù)等。

數(shù)據(jù)的平衡化在分類問題中異常重要,一般認(rèn)為訓(xùn)練集中的數(shù)據(jù)應(yīng)該相對于標(biāo)簽類別近似于平均分布,也就是每一個類別標(biāo)簽所對應(yīng)的數(shù)據(jù)集在訓(xùn)練集中是基本相等的,以避免網(wǎng)絡(luò)過于傾向于表現(xiàn)某些分類的特點(diǎn)。

為了平衡數(shù)據(jù)集,應(yīng)該移除一些過度富余的分類中的數(shù)據(jù),并相應(yīng)補(bǔ)充一些相對樣例稀少的分類中的數(shù)據(jù)。

還有一個方法就是復(fù)制一部分這些樣例稀少分類中的數(shù)據(jù),并在這些數(shù)據(jù)中加入隨機(jī)噪聲。

3)數(shù)據(jù)規(guī)則化

將數(shù)據(jù)規(guī)則化到統(tǒng)一的區(qū)間(如[0,1])中具有很重要的優(yōu)點(diǎn):防止數(shù)據(jù)中存在較大數(shù)值的數(shù)據(jù)造成數(shù)值較小的數(shù)據(jù)對于訓(xùn)練效果減弱甚至無效化,一個常用的方法是將輸入和輸出數(shù)據(jù)按比例調(diào)整到一個和激活函數(shù)相對應(yīng)的區(qū)間。

4)網(wǎng)絡(luò)權(quán)值初始化

CNN的初始化主要是初始化卷積層和輸出層的卷積核(權(quán)值)和偏置

網(wǎng)絡(luò)權(quán)值初始化就是將網(wǎng)絡(luò)中的所有連接權(quán)重賦予一個初始值,如果初始權(quán)重向量處在誤差曲面的一個相對平緩的區(qū)域的時候,網(wǎng)絡(luò)訓(xùn)練的收斂速度可能會很緩慢,一般情況下網(wǎng)絡(luò)的連接權(quán)重和閾值被初始化在一個具有0均值的相對小的區(qū)間內(nèi)均勻分布。

5)BP算法的學(xué)習(xí)速率

如果學(xué)習(xí)速率選取的較大,則會在訓(xùn)練過程中較大幅度的調(diào)整權(quán)值w,從而加快網(wǎng)絡(luò)的訓(xùn)練速度,但是這和造成網(wǎng)絡(luò)在誤差曲面上搜索過程中頻繁抖動,且有可能使得訓(xùn)練過程不能收斂。

如果學(xué)習(xí)速率選取的較小,能夠穩(wěn)定的使得網(wǎng)絡(luò)逼近于全局最優(yōu)點(diǎn),但也可能陷入一些局部最優(yōu),并且參數(shù)更新速度較慢。

自適應(yīng)學(xué)習(xí)率設(shè)定有較好的效果。

6)收斂條件

有幾個條件可以作為停止訓(xùn)練的判定條件,訓(xùn)練誤差、誤差梯度、交叉驗證等。一般來說,訓(xùn)練集的誤差會隨著網(wǎng)絡(luò)訓(xùn)練的進(jìn)行而逐步降低。

7)訓(xùn)練方式

訓(xùn)練樣例可以有兩種基本的方式提供給網(wǎng)絡(luò)訓(xùn)練使用,也可以是兩者的結(jié)合:逐個樣例訓(xùn)練(EET)、批量樣例訓(xùn)練(BT)。

在EET中,先將第一個樣例提供給網(wǎng)絡(luò),然后開始應(yīng)用BP算法訓(xùn)練網(wǎng)絡(luò),直到訓(xùn)練誤差降低到一個可以接受的范圍,或者進(jìn)行了指定步驟的訓(xùn)練次數(shù)。然后再將第二個樣例提供給網(wǎng)絡(luò)訓(xùn)練。

EET的優(yōu)點(diǎn)是相對于BT只需要很少的存儲空間,并且有更好的隨機(jī)搜索能力,防止訓(xùn)練過程陷入局部最小區(qū)域。

EET的缺點(diǎn)是如果網(wǎng)絡(luò)接收到的第一個樣例就是劣質(zhì)(有可能是噪音數(shù)據(jù)或者特征不明顯)的數(shù)據(jù),可能使得網(wǎng)絡(luò)訓(xùn)練過程朝著全局誤差最小化的反方向進(jìn)行搜索。

相對的,BT方法是在所有訓(xùn)練樣例都經(jīng)過網(wǎng)絡(luò)傳播后才更新一次權(quán)值,因此每一次學(xué)習(xí)周期就包含了所有的訓(xùn)練樣例數(shù)據(jù)。

BT方法的缺點(diǎn)也很明顯,需要大量的存儲空間,而且相比EET更容易陷入局部最小區(qū)域。

而隨機(jī)訓(xùn)練(ST)則是相對于EET和BT一種折衷的方法,ST和EET一樣也是一次只接受一個訓(xùn)練樣例,但只進(jìn)行一次BP算法并更新權(quán)值,然后接受下一個樣例重復(fù)同樣的步驟計算并更新權(quán)值,并且在接受訓(xùn)練集最后一個樣例后,重新回到第一個樣例進(jìn)行計算。

ST和EET相比,保留了隨機(jī)搜索的能力,同時又避免了訓(xùn)練樣例中最開始幾個樣例如果出現(xiàn)劣質(zhì)數(shù)據(jù)對訓(xùn)練過程的過度不良影響。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4824

    瀏覽量

    106722
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4759

    瀏覽量

    97102
  • 卷積
    +關(guān)注

    關(guān)注

    0

    文章

    95

    瀏覽量

    18920
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    自動駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)啥?

    在自動駕駛領(lǐng)域,經(jīng)常會聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)模型。CNN在圖像處理中尤其常見,因為圖像本身就可以看作是由像
    的頭像 發(fā)表于 11-19 18:15 ?1804次閱讀
    自動駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是<b class='flag-5'>個</b>啥?

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計原理及在MCU200T上仿真測試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時的梯度耗散問題。當(dāng)x&gt;0 時,梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x&lt;0 時,該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    (q7_t) 和 16 位整數(shù) (q15_t)。 卷積神經(jīng)網(wǎng)絡(luò)示例: 本示例中使用的 CNN 基于來自 Caffe 的 CIFAR-10 示例。神經(jīng)網(wǎng)絡(luò)由 3
    發(fā)表于 10-29 06:08

    構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議

    整個模型非常巨大。所以要想實現(xiàn)輕量級的CNN神經(jīng)網(wǎng)絡(luò)模型,首先應(yīng)該避免嘗試單層神經(jīng)網(wǎng)絡(luò)。 2)減少卷積核的大小:CNN神經(jīng)網(wǎng)絡(luò)是通過權(quán)值共享的方式,利用
    發(fā)表于 10-28 08:02

    卷積運(yùn)算分析

    的數(shù)據(jù),故設(shè)計了ConvUnit模塊實現(xiàn)單個感受域規(guī)模的卷積運(yùn)算. 卷積運(yùn)算:不同于數(shù)學(xué)當(dāng)中提及到的卷積概念,CNN神經(jīng)網(wǎng)絡(luò)中的卷積嚴(yán)格意義
    發(fā)表于 10-28 07:31

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識別。一旦模型被訓(xùn)練并保存,就可以用于對新圖像進(jìn)行推理和預(yù)測。要使用生成的模型進(jìn)行推理,可以按照以下步驟進(jìn)行操作: 1.
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速器上。首先需要將所有權(quán)重數(shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲器內(nèi)。 在仿真環(huán)境下,可將其存于一文件,并在 Verilog 代碼中通過 readmemh 函數(shù)
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?646次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1279次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1256次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?1321次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩核心過程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP
    的頭像 發(fā)表于 02-12 15:13 ?1486次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一簡單的神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)由多個神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?832次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?2213次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法