chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

研究證明:機(jī)器學(xué)習(xí)可幫助癱瘓患者提供大腦活動(dòng)學(xué)習(xí)控制電腦

如意 ? 來源:OFweek電子工程網(wǎng) ? 作者:學(xué)術(shù)頭條 ? 2020-09-08 14:44 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

9 月 7 日,影響因子比主刊 Nature 還高的《自然生物技術(shù)(Nature Biotechnology)》,發(fā)表了加州大學(xué)舊金山分校的一項(xiàng)突破性進(jìn)展。

加州大學(xué)舊金山威爾研究所的神經(jīng)科學(xué)研究人員通過一個(gè)人腦控制假肢的研究證明,機(jī)器學(xué)習(xí)技術(shù)可以幫助癱瘓患者通過大腦活動(dòng)學(xué)習(xí)控制電腦光標(biāo),而不需要大量的日常再訓(xùn)練。

這項(xiàng)可以讓大腦和機(jī)器學(xué)習(xí)系統(tǒng)隨著時(shí)間推移建立穩(wěn)定“伙伴關(guān)系”的“即插即用”技術(shù)的成功,正是過去所有腦機(jī)接口(BCI)研究工作一直追求的目標(biāo)。

研究證明:機(jī)器學(xué)習(xí)可幫助癱瘓患者提供大腦活動(dòng)學(xué)習(xí)控制電腦

“腦機(jī)接口領(lǐng)域近年來取得了很大的進(jìn)步,但由于現(xiàn)有的系統(tǒng)每天都要重新設(shè)置和校準(zhǔn),它們還不能進(jìn)入大腦的自然學(xué)習(xí)過程。這就像讓一個(gè)人從頭開始一遍又一遍地學(xué)習(xí)騎自行車?!奔又荽髮W(xué)舊金山分校神經(jīng)學(xué)系副教授、研究資深作者、醫(yī)學(xué)博士 Karunesh Ganguly 說,“讓人工學(xué)習(xí)系統(tǒng)適應(yīng)大腦復(fù)雜的長(zhǎng)期學(xué)習(xí)模式,這在癱瘓患者身上是前所未有的?!?/p>

ECoG 電極陣列

皮層腦電圖(ECoG)陣列包括一個(gè)便利貼大小的電極墊,通過手術(shù)放置在大腦表面。它們可以長(zhǎng)期、穩(wěn)定地記錄神經(jīng)活動(dòng),并已被批準(zhǔn)用于癲癇患者的癲癇發(fā)作監(jiān)測(cè)。

相比之下,過去的腦機(jī)接口技術(shù)往往使用的是“針墊”式的鋒利電極陣列,這種陣列穿透腦組織能夠獲得更敏感的記錄,但隨著時(shí)間的推移,信號(hào)往往會(huì)轉(zhuǎn)移或丟失。

為了證明了 ECoG 電極陣列在腦機(jī)接口應(yīng)用中的價(jià)值,Ganguly 研究團(tuán)隊(duì)獲得了在癱瘓患者中長(zhǎng)期慢性植入 ECoG 陣列設(shè)備的批準(zhǔn),以測(cè)試其作為長(zhǎng)期、穩(wěn)定的 BCI 植入物的安全性和有效性。

在這項(xiàng)最新研究論文中,Ganguly 的團(tuán)隊(duì)記錄了在四肢癱瘓患者身上使用 ECoG 電極陣列的情況。受試者還參與了一項(xiàng)臨床試驗(yàn),該試驗(yàn)旨在測(cè)試使用 ECoG 陣列來讓癱瘓患者控制假肢手臂和手,不過在這篇新論文中,參與者使用植入物實(shí)現(xiàn)的是控制屏幕上的電腦光標(biāo)。

此外,研究人員還開發(fā)了一種腦機(jī)接口算法,利用機(jī)器學(xué)習(xí)將 ECoG 電極記錄的大腦活動(dòng)與用戶所需的光標(biāo)移動(dòng)相匹配。最初,研究人員遵循每天重置算法的標(biāo)準(zhǔn)做法。參與者首先想象特定的脖子和手腕動(dòng)作,同時(shí)看著光標(biāo)在屏幕上移動(dòng)。

漸漸地,計(jì)算機(jī)算法開始自我更新,使光標(biāo)的運(yùn)動(dòng)與由此產(chǎn)生的大腦活動(dòng)相匹配,有效地將光標(biāo)的控制權(quán)轉(zhuǎn)交給用戶。

由于患者每天都要開始這個(gè)過程,就會(huì)給在可以達(dá)到的控制水平上設(shè)置一個(gè)嚴(yán)格的限制。因?yàn)檎莆赵O(shè)備的控制可能需要幾個(gè)小時(shí),有時(shí)參與者甚至不得不完全放棄。

然后,研究人員切換到允許算法繼續(xù)更新以匹配參與者的大腦活動(dòng),而不用每天重新設(shè)置它。他們發(fā)現(xiàn),大腦信號(hào)和機(jī)器學(xué)習(xí)增強(qiáng)算法之間的持續(xù)相互作用,會(huì)在許多天內(nèi)導(dǎo)致性能的持續(xù)改善。最初,每天都有一些需要彌補(bǔ)的損失,但很快參與者就能夠立即達(dá)到頂級(jí)水平的表現(xiàn)。

“即插即用”的腦機(jī)接口

“我們認(rèn)為這是試圖在大腦和計(jì)算機(jī)這兩個(gè)學(xué)習(xí)系統(tǒng)之間建立伙伴關(guān)系,最終讓人工界面成為用戶的延伸,就像他們自己的手或手臂一樣?!?/p>

研究人員表示,隨著時(shí)間的推移,參與者的大腦能夠放大神經(jīng)活動(dòng)模式,它可以利用 ECoG 陣列最有效地驅(qū)動(dòng)人工接口,同時(shí)消除不太有效的信號(hào),而這一過程很像大腦學(xué)習(xí)復(fù)雜任務(wù)的過程。

他們觀察到,參與者的大腦活動(dòng)似乎形成了一種根深蒂固的、一致的大腦“模式”來控制腦機(jī)接口,這種情況在日常的重置和重新校準(zhǔn)中從未發(fā)生過。

經(jīng)過幾周的持續(xù)學(xué)習(xí),當(dāng)界面重新設(shè)置時(shí),參與者迅速重新建立起控制設(shè)備的相同的神經(jīng)活動(dòng)模式——有效地將算法重新訓(xùn)練到原來的狀態(tài)。

“一旦用戶建立了控制界面的解決方案的持久記憶,就不需要重新設(shè)置,”Ganguly 說?!按竽X很快就會(huì)匯聚到同一個(gè)解決方案上?!?/p>

研究表明,他們可以完全停止算法的自我更新,參與者可以簡(jiǎn)單地每天開始使用界面,而不需要再培訓(xùn)或重新校準(zhǔn)。在沒有再訓(xùn)練的 44 天里,表現(xiàn)沒有下降,參與者甚至可以連續(xù)幾天不練習(xí),表現(xiàn)也幾乎沒有下降。

“我們一直注意到,我們需要設(shè)計(jì)出一種技術(shù),它不會(huì)被束之高閣,而是能夠切實(shí)改善癱瘓患者的日常生活。”Ganguly 說,這些數(shù)據(jù)表明,基于 ECoG 的腦機(jī)接口可以作為此類技術(shù)的基礎(chǔ)。

而這種即時(shí)“即插即用”的腦機(jī)接口技術(shù)一直是該領(lǐng)域的重要挑戰(zhàn),因?yàn)榇蠖鄶?shù)研究人員使用的“針形”電極往往會(huì)隨時(shí)間移動(dòng),從而改變每個(gè)電極所捕獲的信號(hào)。而且,由于這些電極穿透腦組織,免疫系統(tǒng)往往會(huì)排斥它們,逐漸削弱它們的信號(hào)。

ECoG 陣列雖然比傳統(tǒng)植入物的敏感度低,但其長(zhǎng)期穩(wěn)定性似乎彌補(bǔ)了這一缺陷。ECoG 記錄的穩(wěn)定性對(duì)于更復(fù)雜的機(jī)器人系統(tǒng)(如假肢)的長(zhǎng)期控制可能更為重要,這也是Ganguly 研究下一階段的關(guān)鍵目標(biāo)。
責(zé)編AJX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電腦
    +關(guān)注

    關(guān)注

    16

    文章

    1810

    瀏覽量

    71591
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49771

    瀏覽量

    261708
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8541

    瀏覽量

    136242
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何在機(jī)器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習(xí)的目標(biāo)檢測(cè)定位已訓(xùn)練的目標(biāo)類別,并通過矩形框(邊界框)對(duì)其進(jìn)行標(biāo)識(shí)。 在討論人工智能(AI)或深度學(xué)習(xí)時(shí),經(jīng)常會(huì)出現(xiàn)“神經(jīng)網(wǎng)絡(luò)”、“黑箱”、“標(biāo)注”等術(shù)語。這些概念對(duì)非專業(yè)
    的頭像 發(fā)表于 09-10 17:38 ?713次閱讀
    如何在<b class='flag-5'>機(jī)器</b>視覺中部署深度<b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    深度學(xué)習(xí)對(duì)工業(yè)物聯(lián)網(wǎng)有哪些幫助

    深度學(xué)習(xí)作為人工智能的核心分支,通過模擬人腦神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu),能夠自動(dòng)從海量工業(yè)數(shù)據(jù)中提取復(fù)雜特征,為工業(yè)物聯(lián)網(wǎng)(IIoT)提供了從數(shù)據(jù)感知到智能決策的全鏈路升級(jí)能力。以下從技術(shù)賦能、場(chǎng)景突破
    的頭像 發(fā)表于 08-20 14:56 ?775次閱讀

    PID控制算法學(xué)習(xí)筆記資料

    用于新手學(xué)習(xí)PID控制算法。
    發(fā)表于 08-12 16:22 ?7次下載

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    隨著機(jī)器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場(chǎng)可編程門陣列)作為一種靈活且高效的硬件加速平臺(tái)
    的頭像 發(fā)表于 07-16 15:34 ?2643次閱讀

    NVIDIA Isaac Lab可用環(huán)境與強(qiáng)化學(xué)習(xí)腳本使用指南

    Lab 是一個(gè)適用于機(jī)器人學(xué)習(xí)的開源模塊化框架,其模塊化高保真仿真適用于各種訓(xùn)練環(huán)境,Isaac Lab 同時(shí)支持模仿學(xué)習(xí)(模仿人類)和強(qiáng)化學(xué)習(xí)(在嘗試和錯(cuò)誤中進(jìn)行學(xué)習(xí)),為所有
    的頭像 發(fā)表于 07-14 15:29 ?1865次閱讀
    NVIDIA Isaac Lab可用環(huán)境與強(qiáng)化<b class='flag-5'>學(xué)習(xí)</b>腳本使用指南

    機(jī)器學(xué)習(xí)賦能的智能光子學(xué)器件系統(tǒng)研究與應(yīng)用

    騰訊會(huì)議---六月直播 1.機(jī)器學(xué)習(xí)賦能的智能光子學(xué)器件系統(tǒng)研究與應(yīng)用 2.COMSOL聲學(xué)多物理場(chǎng)仿真技術(shù)與應(yīng)用 3.超表面逆向設(shè)計(jì)及前沿應(yīng)用(從基礎(chǔ)入門到論文復(fù)現(xiàn)) 4.智能光學(xué)計(jì)算成像技術(shù)
    的頭像 發(fā)表于 06-04 17:59 ?455次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>賦能的智能光子學(xué)器件系統(tǒng)<b class='flag-5'>研究</b>與應(yīng)用

    活動(dòng)名單公布!學(xué)電路設(shè)計(jì)分享學(xué)習(xí)心得、技術(shù)疑問及實(shí)戰(zhàn)成果,贏取專屬禮品!

    :elecfans123)領(lǐng)取活動(dòng)獎(jiǎng)勵(lì),過期視為放棄本獎(jiǎng)品! 隨著物聯(lián)網(wǎng)、智能硬件等領(lǐng)域的快速發(fā)展,硬件開發(fā)與電路設(shè)計(jì)技能成為電子工程師和創(chuàng)客的核心競(jìng)爭(zhēng)力。為幫助剛?cè)胄械碾娮有“?、高校大學(xué)生高效掌握從基礎(chǔ)理論
    發(fā)表于 05-14 09:53

    名單公布!【書籍評(píng)測(cè)活動(dòng)NO.58】ROS 2智能機(jī)器人開發(fā)實(shí)踐

    萬開發(fā)者走上 ROS 機(jī)器人開發(fā)之路,其中不乏現(xiàn)今機(jī)器人行業(yè)的眾多中流砥柱。 如今,為了幫助大家更好地學(xué)習(xí)ROS,全面系統(tǒng)地了解下一個(gè)可能的計(jì)算平臺(tái),為迎接智能
    發(fā)表于 03-03 14:18

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場(chǎng)的未來發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?628次閱讀

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機(jī)器學(xué)習(xí)模型部署在資源受限的設(shè)備(如微
    的頭像 發(fā)表于 01-25 17:05 ?1231次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開發(fā)環(huán)境

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機(jī)器
    的頭像 發(fā)表于 12-30 09:16 ?1986次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】1.全書概覽與第一章學(xué)習(xí)

    非常感謝電子發(fā)燒友提供的這次書籍測(cè)評(píng)活動(dòng)!最近,我一直在學(xué)習(xí)大模型和人工智能的相關(guān)知識(shí),深刻體會(huì)到機(jī)器人技術(shù)是一個(gè)極具潛力的未來方向,甚至可以說是推動(dòng)時(shí)代變革的重要力量。能參與這次
    發(fā)表于 12-27 14:50

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?705次閱讀

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+初品的體驗(yàn)

    的快速發(fā)展,相關(guān)人才的需求也在不斷增加,通過閱讀該書可以幫助大家系統(tǒng)性地了解和分析當(dāng)前具身智能機(jī)器人系統(tǒng)的發(fā)展現(xiàn)狀和前沿研究,為未來的研究和開發(fā)工作
    發(fā)表于 12-20 19:17

    zeta在機(jī)器學(xué)習(xí)中的應(yīng)用 zeta的優(yōu)缺點(diǎn)分析

    的應(yīng)用(基于低功耗廣域物聯(lián)網(wǎng)技術(shù)ZETA) ZETA作為一種低功耗廣域物聯(lián)網(wǎng)(LPWAN)技術(shù),雖然其直接應(yīng)用于機(jī)器學(xué)習(xí)的場(chǎng)景可能并不常見,但它可以通過提供高效、穩(wěn)定的物聯(lián)網(wǎng)通信支持,間接促進(jìn)
    的頭像 發(fā)表于 12-20 09:11 ?1633次閱讀