chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

淺析人工智能缺乏透明性的利弊

我快閉嘴 ? 來(lái)源:千家網(wǎng) ? 作者:David Petersson ? 2020-09-17 14:32 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

雖然雖然越老越多的企業(yè)組織在使用AI技術(shù),但許多企業(yè)對(duì)它的工作方式尚無(wú)清晰的了解。本文中,我們探討了AI缺乏透明性的利弊。

當(dāng)基于規(guī)則的軟件編程不再能夠解決計(jì)算世界想要解決的問(wèn)題時(shí),現(xiàn)代AI誕生了。我們不可能對(duì)程序必須測(cè)量的所有條件進(jìn)行編碼,因此計(jì)算專(zhuān)家設(shè)計(jì)了模仿人類(lèi)思維方式的機(jī)器,從而使AI能夠通過(guò)觀察數(shù)據(jù)自行學(xué)習(xí)。這種稱(chēng)為神經(jīng)網(wǎng)絡(luò)的方法催生了AI技術(shù),例如人臉識(shí)別程序、癌癥檢測(cè)算法自動(dòng)駕駛汽車(chē)。

但是神經(jīng)網(wǎng)絡(luò)帶有一個(gè)折衷之處:我們無(wú)法理解系統(tǒng)的工作方式,AI模型缺乏透明度。這種現(xiàn)象被稱(chēng)為黑匣子AI,事實(shí)證明這是個(gè)問(wèn)題,而且可能是嚴(yán)重的問(wèn)題。

黑盒AI的權(quán)衡

AI通常以準(zhǔn)確性百分比來(lái)衡量,即系統(tǒng)在多大程度上能夠給出正確答案。根據(jù)手頭的任務(wù),所需的最低精度可能會(huì)有所不同,但是即使是99%的精度也不能成為AI值的唯一度量。我們還必須考慮到AI的主要缺點(diǎn),尤其是在將AI應(yīng)用于商業(yè)中時(shí):具有近乎完美準(zhǔn)確性的AI模型也可能會(huì)出現(xiàn)問(wèn)題。

隨著模型準(zhǔn)確性的提高,人工智能解釋其得出某個(gè)答案的原因的能力下降,這使企業(yè)必須面對(duì)的一個(gè)問(wèn)題是:缺乏模型的AI透明度,因此,我們?nèi)祟?lèi)無(wú)法信任其結(jié)果。因?yàn)?,我們可能完全不知道到最終算法底會(huì)進(jìn)化成什么樣,是否會(huì)造成嚴(yán)重的后果,一切皆有可能。

黑盒問(wèn)題在AI技術(shù)的早期階段可以接受,但是當(dāng)發(fā)現(xiàn)算法偏差時(shí)就失去了它的優(yōu)點(diǎn)。例如,經(jīng)過(guò)開(kāi)發(fā)的AI可以根據(jù)種族對(duì)喪失工作能力的人進(jìn)行分類(lèi),而用于銀行業(yè)務(wù)AI根據(jù)性別篩選不合格貸款申請(qǐng)者。 AI接受訓(xùn)練的數(shù)據(jù)并不平衡,無(wú)法包含各種人的足夠數(shù)據(jù),人類(lèi)決策中存在的歷史偏見(jiàn)也傳遞到了AI算法模型中。

AI還表明,近乎完美的模型仍可能犯下令人震驚的錯(cuò)誤。精度為99%的AI模型可能會(huì)為剩余的1%產(chǎn)生誤差,例如將停車(chē)標(biāo)志分類(lèi)為限速標(biāo)志。猶如,千萬(wàn)人級(jí)別人口的大城市,1%的數(shù)量也不容小覷。

盡管這是錯(cuò)誤分類(lèi)或數(shù)據(jù)量不足的一些最極端情況,但它們?nèi)匀煌伙@了AI算法存在缺陷的可能性。人工智能遵循一種模式來(lái)得出答案,其神奇之處在于,它在超越人力的情況下表現(xiàn)出色。出于相同的原因,模式中的異常更改使模型容易受到攻擊,這也是我們需要AI透明度的原因,我們需要知道AI如何得出結(jié)論。

特別是,當(dāng)使用AI進(jìn)行關(guān)鍵決策時(shí),必須了解算法的推理過(guò)程與邏輯關(guān)系。旨在檢測(cè)癌癥的AI模型(即使錯(cuò)誤率僅為1%)也可能威脅生命。在這種情況下,人工智能和人類(lèi)需要一起協(xié)同工作,并且當(dāng)人工智能模型可以解釋其如何達(dá)成某個(gè)決定時(shí),任務(wù)將變得更加容易。 AI的透明度使其成為團(tuán)隊(duì)合作者。

從法律的角度來(lái)看,有時(shí)透明是必要的步驟。

數(shù)據(jù)分析行業(yè)思想領(lǐng)導(dǎo)者Piyanka Jain說(shuō):“一些受監(jiān)管的行業(yè),例如銀行,都將模型的可解釋性作為在模型投入生產(chǎn)之前獲得合規(guī)和法律批準(zhǔn)的必要步驟?!?/p>

其他案例涉及GDPR或《加利福尼亞消費(fèi)者隱私法》,其中AI處理私人信息。AI軟件公司 Stradigi AI首席科學(xué)官兼聯(lián)合創(chuàng)始人Carolina Bessega說(shuō):“ GDPR的一個(gè)方面是,當(dāng)使用個(gè)人私人數(shù)據(jù)的算法做出決定時(shí),人類(lèi)有權(quán)提出該決定背后的原因。”

看來(lái)AI透明性有很多好處,但是為什么所有的算法都不透明?

人工智能透明度不足

就像可以解釋如何實(shí)現(xiàn)某個(gè)決策的算法一樣,它也可以按比例變得更容易被黑客入侵。

通過(guò)了解AI的推理,黑客將可以更輕松地欺騙算法。 “在欺詐檢測(cè)中不鼓勵(lì)A(yù)I透明,” Jain解釋說(shuō)。 “我們希望更少的人知道我們?nèi)绾巫サ狡墼p行為-網(wǎng)絡(luò)安全方面也是如此??偟膩?lái)說(shuō),當(dāng)我們?cè)噲D使用AI來(lái)抓捕壞人時(shí),我們希望更少的人知道潛在的邏輯,而AI很適合那?!?/p>

AI透明度的另一個(gè)問(wèn)題是專(zhuān)有算法的保護(hù),因?yàn)檠芯咳藛T已證明,僅通過(guò)查看其解釋即可盜竊整個(gè)算法。

最后,透明算法更難設(shè)計(jì),至少暫時(shí)而言,它們只能應(yīng)用于更簡(jiǎn)單的模型。如果必須要具有透明度,那么它可能會(huì)迫使企業(yè)和組織使用不太復(fù)雜的算法。

如何達(dá)到平衡

與其他任何計(jì)算機(jī)程序一樣,人工智能需要優(yōu)化。為此,我們要查看特定問(wèn)題的特定需求,然后調(diào)整通用模型以最適合這些需求。

實(shí)施AI時(shí),組織必須注意以下四個(gè)因素:

法律需求:如果工作需要從法律和法規(guī)的角度進(jìn)行解釋?zhuān)敲闯颂峁┩该鞫戎鈩e無(wú)選擇。為此,組織可能必須訴諸更簡(jiǎn)單但可解釋的算法。

嚴(yán)重程度:如果要在生命攸關(guān)的任務(wù)中使用AI,則必須做到透明。這樣的任務(wù)很可能不僅僅依賴(lài)于AI,因此擁有推理機(jī)制可以改善與操作員的團(tuán)隊(duì)合作。如果AI影響某人的生活,例如用于工作應(yīng)用程序的算法,則同樣適用。

另一方面,如果AI的任務(wù)不是很關(guān)鍵,那么不透明的模型就足夠了??紤]一種算法,該算法建議下一個(gè)潛在客戶(hù)接觸具有數(shù)千個(gè)潛在客戶(hù)的數(shù)據(jù)庫(kù),交叉檢查AI的決定根本不值得。

訪問(wèn)權(quán)限:根據(jù)誰(shuí)可以訪問(wèn)AI模型,組織可能希望保護(hù)算法免受不必要的影響。如果可解釋性可以幫助專(zhuān)家得出更好的結(jié)論,那么即使在網(wǎng)絡(luò)安全領(lǐng)域,它也可以是很好的。但是,如果局外人可以訪問(wèn)同一資源并了解該算法的工作原理,則最好使用不透明的模型。

數(shù)據(jù)集:無(wú)論何種情況,組織都必須始終努力擁有最好來(lái)自盡可能多的來(lái)源的多樣化且平衡的數(shù)據(jù)集。最終,我們將盡可能多地依賴(lài)于AI,并且AI僅像訓(xùn)練過(guò)的數(shù)據(jù)一樣智能。通過(guò)清理訓(xùn)練數(shù)據(jù),消除噪聲并平衡輸入,我們可以幫助減少偏差并提高模型的準(zhǔn)確性。
責(zé)任編輯:tzh

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103622
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35164

    瀏覽量

    279968
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49028

    瀏覽量

    249529
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門(mén)學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會(huì)發(fā)展的當(dāng)下,無(wú)論是探索未來(lái)職業(yè)方向,還是更新技術(shù)儲(chǔ)備,掌握大模型知識(shí)都已成為新時(shí)代的必修課。從職場(chǎng)上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的智能工具,大模型正在工作生活
    發(fā)表于 07-04 11:10

    墨芯人工智能入選中國(guó)戰(zhàn)略新興產(chǎn)業(yè)典型案例

    近日,墨芯人工智能科技(深圳)有限公司(以下簡(jiǎn)稱(chēng)"墨芯人工智能"或“墨芯”)入選國(guó)家發(fā)改委《中國(guó)戰(zhàn)略新興產(chǎn)業(yè)典型案例》,成為新一代人工智能領(lǐng)域具有代表
    的頭像 發(fā)表于 06-13 14:53 ?861次閱讀

    探究人工智能發(fā)展前沿:智能體的演進(jìn)及其社會(huì)影響

    了在推進(jìn)這些技術(shù)時(shí)必須考慮的倫理問(wèn)題(如透明度和問(wèn)責(zé)制)以及建立有效管理框架和跨部門(mén)合作的重要,為尋求深入了解人工智能體帶來(lái)的機(jī)遇與挑戰(zhàn)的讀者提供了寶貴的信息。 該報(bào)告首先定義了人工智能
    的頭像 發(fā)表于 02-10 09:44 ?790次閱讀
    探究<b class='flag-5'>人工智能</b>發(fā)展前沿:<b class='flag-5'>智能</b>體的演進(jìn)及其社會(huì)影響

    人工智能推理及神經(jīng)處理的未來(lái)

    、個(gè)性化和效率的社會(huì)需求,又進(jìn)一步推動(dòng)了人工智能技術(shù)的集成。此外,不斷發(fā)展的監(jiān)管體系,則強(qiáng)調(diào)了合乎倫理道德的人工智能、數(shù)據(jù)隱私和算法透明度的重要,進(jìn)而指導(dǎo)
    的頭像 發(fā)表于 12-23 11:18 ?595次閱讀
    <b class='flag-5'>人工智能</b>推理及神經(jīng)處理的未來(lái)

    嵌入式和人工智能究竟是什么關(guān)系?

    嵌入式和人工智能究竟是什么關(guān)系? 嵌入式系統(tǒng)是一種特殊的系統(tǒng),它通常被嵌入到其他設(shè)備或機(jī)器中,以實(shí)現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強(qiáng)的適應(yīng)和靈活性,能夠根據(jù)用戶(hù)需求進(jìn)行定制化設(shè)計(jì)。它廣泛應(yīng)用于各種
    發(fā)表于 11-14 16:39

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    和國(guó)際合作等多個(gè)層面。這些內(nèi)容讓我更加認(rèn)識(shí)到,在推動(dòng)人工智能與能源科學(xué)融合的過(guò)程中,需要不斷探索和創(chuàng)新,以應(yīng)對(duì)各種挑戰(zhàn)和機(jī)遇。 最后,通過(guò)閱讀這一章,我深刻感受到人工智能對(duì)于能源科學(xué)的重要。
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    很幸運(yùn)社區(qū)給我一個(gè)閱讀此書(shū)的機(jī)會(huì),感謝平臺(tái)。 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們揭示了人工智能技術(shù)在生命科學(xué)領(lǐng)域中的廣泛應(yīng)用和深遠(yuǎn)影響。在
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    的同時(shí),確保其公正、透明度和可持續(xù),是當(dāng)前和未來(lái)科學(xué)研究必須面對(duì)的重要課題。此外,培養(yǎng)具備AI技能的科研人才,也是推動(dòng)這一領(lǐng)域發(fā)展的關(guān)鍵。 4. 激發(fā)創(chuàng)新思維 閱讀這一章,我被深深啟發(fā)的是
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    RISC-V在人工智能圖像處理領(lǐng)域的應(yīng)用前景十分廣闊,這主要得益于其開(kāi)源、靈活性和低功耗等特點(diǎn)。以下是對(duì)RISC-V在人工智能圖像處理應(yīng)用前景的詳細(xì)分析: 一、RISC-V的基本特點(diǎn) RISC-V
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問(wèn)下哪些比較容易學(xué) 不過(guò)好像都是要學(xué)的
    發(fā)表于 09-26 15:24

    人工智能ai4s試讀申請(qǐng)

    目前人工智能在繪畫(huà)對(duì)話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個(gè)需要研究的課題,本書(shū)對(duì)ai4s基本原理和原則,方法進(jìn)行描訴,有利于總結(jié)經(jīng)驗(yàn),擬按照要求準(zhǔn)備相關(guān)體會(huì)材料。看能否有助于入門(mén)和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》 這本書(shū)便將為讀者徐徐展開(kāi)AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學(xué)家做了什么? 人工智能將如何改變我們所生
    發(fā)表于 09-09 13:54

    加州立法推動(dòng)AI透明度,生成式人工智能迎來(lái)數(shù)據(jù)披露新紀(jì)元

    的數(shù)據(jù)使用與透明度問(wèn)題也逐漸成為公眾關(guān)注的焦點(diǎn)。8月28日,美國(guó)加州立法機(jī)構(gòu)的一項(xiàng)重大舉措——人工智能訓(xùn)練數(shù)據(jù)透明度法案的通過(guò),標(biāo)志著該州在推動(dòng)AI行業(yè)健康發(fā)展、保障公眾權(quán)益方面邁出了堅(jiān)實(shí)的一步。
    的頭像 發(fā)表于 08-28 16:20 ?938次閱讀

    報(bào)名開(kāi)啟!深圳(國(guó)際)通用人工智能大會(huì)將啟幕,國(guó)內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國(guó)際)通用人工智能大會(huì)暨深圳(國(guó)際)通用人工智能產(chǎn)業(yè)博覽會(huì)將在深圳國(guó)際會(huì)展中心(寶安)舉辦。大會(huì)以“魅力AI·無(wú)限未來(lái)”為主題,致力于打造全球通用人工智能領(lǐng)域集產(chǎn)品
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個(gè)方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過(guò)程加速:FPGA可以用來(lái)加速深度學(xué)習(xí)的訓(xùn)練和推理過(guò)程。由于其高并行和低延遲特性
    發(fā)表于 07-29 17:05