chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

wordNet詞向量和詞義

深度學(xué)習(xí)自然語言處理 ? 來源:深度學(xué)習(xí)自然語言處理 ? 作者:艾春輝 ? 2020-11-02 15:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

review: Word2vec: More details

How do we have usable meaning in a computer?

wordNet的問題:?

1. 詞語跟詞語之間存在一定的語境差別 2. 有些單詞的新含義缺少 3. 需要主觀調(diào)整 4. 無法計(jì)算單詞相似度 word2vec

步驟:

1. 尋找大量的文本 2. 固定詞匯表中的每個(gè)單詞都有一個(gè)向量表示 3. 文本中的每一個(gè)位置t,均存在中心詞c和上下詞o 4. 使用c和o的詞向量相似性來計(jì)算給定c和o的概率 5.不斷調(diào)整詞向量來最大化這個(gè)概率

word2vec的一些參數(shù):

1. U的每一行都是一個(gè)單詞的詞向量,點(diǎn)乘之后通過softmax可以得到概率分布,從而得到上下文分布。但是該分布和你在上下文哪個(gè)位置是無關(guān)的, 2. We want a model that gives a reasonably high probability estimate to all words that occur in the context (fairly often)----我們希望給出一個(gè)合理的高概率估計(jì) 3. 去除一些停用詞 更細(xì)的細(xì)節(jié)

為什么每個(gè)單詞都需要訓(xùn)練兩個(gè)詞向量

1. 更容易優(yōu)化,最后都取平均值 2. 可以每個(gè)單詞只??個(gè)向量

兩個(gè)模型變體

1. Skip-grams (SG)輸?中?詞并預(yù)測(cè)上下?中的單詞 2. Continuous Bag of Words (CBOW)輸?上下?中的單詞并預(yù)測(cè)中?詞 之前?直使?softmax(簡單但代價(jià)很?的訓(xùn)練?法)

接下來使?負(fù)采樣?法加快訓(xùn)練速率 The skip-gram model with negative sampling (HW2)

原始的論文中skip-gram模型是最大化的,這里給出:

課程中的公式:

我們希望中?詞與真實(shí)上下?單詞的向量點(diǎn)積更?,中?詞與隨機(jī)單詞的點(diǎn)積更?

k是我們負(fù)采樣的樣本數(shù)?

這里的0.75次方是選擇的比較好的,沒有科學(xué)依據(jù)

But why not capture co-occurrence counts directly?共現(xiàn)矩陣

共現(xiàn)矩陣 X

1. 兩個(gè)方法:windows vs. full document 2. Window :與word2vec類似,在每個(gè)單詞周圍都使?Window,包括語法(POS)和語義信息 3. Word-document 共現(xiàn)矩陣的基本假設(shè)是在同?篇?章中出現(xiàn)的單詞更有可能相互關(guān)聯(lián)。假設(shè)單詞i出現(xiàn)在?章 中j,則矩陣元素$X_{ij}$加?,當(dāng)我們處理完數(shù)據(jù)庫中的所有?章后,就得到了矩陣 X,其??為 |V|*M,其中|V|為詞匯量,而M為文章數(shù),這?構(gòu)建單詞?章co-occurrencematrix的?法也是經(jīng)典的Latent Semantic Analysis所采?的。{>>潛在語義分析<<} ?

利?某個(gè)定?窗?中單詞與單詞同時(shí)出現(xiàn)的次數(shù)來產(chǎn)?window-based (word-word) co-occurrence matrix

let me to tell you a example: 句子

1. I like deep learning. 2. I like NLP. 3. I enjoy flying. 則我們可以得到如下的word-word co-occurrence matrix:

使?共現(xiàn)次數(shù)衡量單詞的相似性,但是會(huì)隨著詞匯量的增加?增?矩陣的??,并且需要很多空間來存儲(chǔ)這??維矩陣,后續(xù)的分類模型也會(huì)由于矩陣的稀疏性?存在稀疏性問題,使得效果不佳。我們需要 對(duì)這?矩陣進(jìn)?降維,獲得低維(25-1000)的稠密向量 how to reduce the dimensionality?

方法一: SVD分解

方法二: Ramped windows that count closer words more----將window傾斜向能統(tǒng)計(jì)更接近的單詞中

方法三: 采用person相關(guān)系數(shù)

glove

兩種方法:

1. 基于計(jì)數(shù):使?整個(gè)矩陣的全局統(tǒng)計(jì)數(shù)據(jù)來直接估計(jì):

優(yōu)點(diǎn)

1. 訓(xùn)練快速 2. 統(tǒng)計(jì)數(shù)據(jù)?效利?

缺點(diǎn)

1. 主要?于捕捉單詞相似性 2. 對(duì)?量數(shù)據(jù)給予?例失調(diào)的重視 2. 轉(zhuǎn)換計(jì)數(shù):定義概率分布并試圖預(yù)測(cè)單詞

優(yōu)點(diǎn)

1. 提?其他任務(wù)的性能 2. 能捕獲除了單詞相似性以外的復(fù)雜的模式

缺點(diǎn)

1. 與語料庫??有關(guān)的量表 2. 統(tǒng)計(jì)數(shù)據(jù)的低效使?(采樣是對(duì)統(tǒng)計(jì)數(shù)據(jù)的低效使?) Encoding meaning in vector differences

采用共現(xiàn)矩陣的思想對(duì)meaning進(jìn)行編碼

為什么采用比值有用?這里摘抄至網(wǎng)上: 假如我們想?yún)^(qū)分ice(固體)和stream(蒸汽),它們之間的關(guān)系可通過與不同單詞x的共線矩陣相似性比值來秒速,比如p(solid | ice)和p(solid | stream)相比,雖然它們之間的值都很小,不能透露有效消息,但是它們的比值卻很大,所以相比之下,solid更常見的用來表示ice而不是stream

我們?nèi)绾卧u(píng)判在線性表達(dá)下的共現(xiàn)矩陣相似度

1. log-bilinear 模型:

2. 向量差異:

公式推導(dǎo)部分來啦,非常非常重要的目標(biāo)函數(shù)優(yōu)化 基于對(duì)于以上概率比值的觀察,我們假設(shè)模型的函數(shù)有如下形式:

其中,代表了context vector, 如上例中的solid, gas, water, fashion等。則是我們要比較的兩個(gè)詞匯, 如上例中的ice,steam。 ? F的可選的形式過多,我們希望有所限定。首先我們希望的是F能有效的在單詞向量空間內(nèi)表示概率比值,由于向顯空問是線性率間,一個(gè)自然的假設(shè)是 F 是關(guān)于同顯 的差的形式:

或:

在此,作者又對(duì)其進(jìn)行了對(duì)稱性分析,即對(duì)于word-word co-occurrence,將向量劃分為center word還是context word的選擇是不重要的,即我們?cè)诮粨Q的時(shí)候該式仍然成立。如何保證這種對(duì)稱性呢? ? ? 我們分兩步來進(jìn)行, 首先要求滿足

該方程的解為 F=exp(參考上面的評(píng)價(jià)方法)同時(shí)與

相比較有

所以,

注意其中破壞了交換時(shí)的對(duì)稱性, 但是這一項(xiàng)并不依賴于 k?所以我們可以將其融合進(jìn)關(guān)于的bias項(xiàng)第二部就是為了平衡對(duì)稱性, 我們?cè)偌尤腙P(guān)于的bias項(xiàng)我們就可以得到的形式。另一方面作者注宣到模型的一個(gè)缺點(diǎn)是對(duì)于所有的co-occurence的權(quán)重是一樣的,即使是那些較少發(fā) 生的co-occurrence。作者認(rèn)為這些可能是噪聲聲,所以他加入了前面的項(xiàng)來做weighted least squares regression模型,即為

的形式。 其中權(quán)重項(xiàng) f 需滿足一下條件:

f(0)=0,因?yàn)橐?是有限的。

較少發(fā)生的co-occurrence所占比重較小。

對(duì)于較多發(fā)生的co-occurrence, f(x)也不能過大。

優(yōu)點(diǎn)

訓(xùn)練快速

可以擴(kuò)展到?型語料庫

即使是?語料庫和?向量,性能也很好

How to evaluate word vectors?

與NLP的?般評(píng)估相關(guān):內(nèi)在與外在

內(nèi)在

對(duì)特定/中間?任務(wù)進(jìn)?評(píng)估

計(jì)算速度快

有助于理解這個(gè)系統(tǒng)

不清楚是否真的有?,除?與實(shí)際任務(wù)建?了相關(guān)性

外在

對(duì)真實(shí)任務(wù)的評(píng)估

計(jì)算精確度可能需要很?時(shí)間

不清楚?系統(tǒng)是問題所在,是交互問題,還是其他?系統(tǒng)

如果?另?個(gè)?系統(tǒng)替換?個(gè)?系統(tǒng)可以提?精確度

Intrinsic word vector evaluation

詞向量類?a:b = c:?,類似于之前的男人對(duì)國王,求女人對(duì)?

英文解釋: This metric has an intuitive interpretation. Ideally, we want xb?xa = xd ?xc (For instance, queen – king = actress – actor). This implies that we want xb?xa + xc = xd. Thus we identify the vector xd which maximizes the normalized dot-product between the two word vectors (i.e. cosine similarity).

一些結(jié)果舉例子:

結(jié)論

1. 300是?個(gè)很好的詞向量維度 2. 不對(duì)稱上下?(只使?單側(cè)的單詞)不是很好,但是這在下游任務(wù)重可能不同 3. window size 設(shè)為 8 對(duì) Glove向量來說?較好 4. window size設(shè)為2的時(shí)候?qū)嶋H上有效的,并且對(duì)于句法分析是更好的,因?yàn)榫浞ㄐЧ?常局部 5. 當(dāng)詞向量的維度不斷變大的時(shí)候,詞向量的效果不會(huì)一直變差,并且會(huì)保持平穩(wěn) 6. glove的訓(xùn)練時(shí)間越長越好 7. 數(shù)據(jù)集越大越好,盡量使用百科類數(shù)據(jù)集合 8. 使用余弦相似度 Another intrinsic word vector evaluation

the problem:Most words have lots of meanings!(一詞多義問題)? Especially common words ? Especially words that have existed for a long time

method1: Improving Word Representations Via Global Context And Multiple Word Prototypes (Huang et al. 2012) -------將常?詞的所有上下?進(jìn)?聚類,通過該詞得到?些清晰的簇,從?將這個(gè)常?詞分解為多個(gè)單詞,例如 bank_1, bank_2, bank_3

method2: Linear Algebraic Structure of Word Senses, with Applications to Polysemy (Arora, …, Ma, …, TACL 2018)

Different senses of a word reside in a linear superposition (weighted sum) in standard word embeddings like word2vec -----------采用加權(quán)和的形式進(jìn)行處理

令人驚訝的是,這個(gè)加權(quán)均值的效果非常好

Training for extrinsic tasks

到目前我們學(xué)的為止,我們的目標(biāo)是內(nèi)在任務(wù),強(qiáng)調(diào)開發(fā)一個(gè)特別優(yōu)秀的word embedding。接下來我們討論如何處理外部任務(wù)

Problem Formulation

Most NLP extrinsic tasks can be formulated as classi?cation tasks. For instance, given a sentence, we can classify the sentence to have positive, negative or neutral sentiment. Similarly, in named-entity recognition (NER), given a context and a central word, we want to classify the central word to be one of many classes. ------許多nlp的task都可以歸類為分類任務(wù)

for example:我們有一個(gè)句子: Jim bought 300 shares of Acme Corp. in 2006,我們的目標(biāo)是得到一個(gè)結(jié)果:[Jim]Person bought 300 shares of [Acme Corp.]Organization in [2006]Time.

對(duì)于這類問題,我們通常從以下形式的訓(xùn)練集合開始:

其中是一個(gè)d維度的詞向量,是一個(gè)C維度的one-hot向量,表示我們wished label(情感詞語,其他詞語,命名主體詞語,買賣決策,等) ? 在機(jī)器學(xué)習(xí)里面,對(duì)于上面問題,我們通常固定輸入和輸出的形式,然后采用一些優(yōu)化算法訓(xùn)練權(quán)重。但在nlp里面,我們需要在訓(xùn)練外部任務(wù)的時(shí)候,對(duì)輸入的詞向量進(jìn)行再次訓(xùn)練 ?Retraining Word Vectors?

我們預(yù)訓(xùn)練的詞向量在外部評(píng)估中的表現(xiàn)仍然有提高的可能,然而,如果我們選擇重新訓(xùn)練,我們會(huì)存在很大的風(fēng)險(xiǎn)------可能效果會(huì)比之前差得多

If we retrain word vectors using the extrinsic task, we need to ensure that the training set is large enough to cover most words from the vocabulary. -----因?yàn)閣ord2vec和glove會(huì)產(chǎn)生一些語義接近的單詞,并且這些單詞位于同一個(gè)單詞空間。如果我們?cè)谝粋€(gè)小的數(shù)據(jù)集上預(yù)訓(xùn)練,這些單詞可能在向量空間中移動(dòng),這會(huì)導(dǎo)致我們的結(jié)果更差

舉例子: 這兩個(gè)例子可以清楚明白的看到,訓(xùn)練集合如果過于小,我們的分類結(jié)果非常差

結(jié)論:如果訓(xùn)練數(shù)據(jù)集合太小,就不應(yīng)該對(duì)單詞向量進(jìn)行再訓(xùn)練。如果培訓(xùn)集很大,再培訓(xùn)可以提高性能Softmax Classi?cation and Regularization

softmax的訓(xùn)練

1. 函數(shù)形式:

2. 上個(gè)式子,是我們計(jì)算x是j的概率,我們采用交叉熵?fù)p失函數(shù):

3. 對(duì)上面損失函數(shù)優(yōu)化,因?yàn)槲覀?y_j$為1,其他類別就是0,也就是說,對(duì)于單個(gè)詞語我們的損失函數(shù)簡化為:

4. 上式損失函數(shù)只是一個(gè)單詞的,但是我們需要使用的訓(xùn)練集不止一個(gè)dancing,假設(shè)我們有N個(gè)單詞,將損失函數(shù)擴(kuò)展:

5. 為了防止過擬合,我們需要加入一個(gè)懲罰項(xiàng):

為什么懲罰項(xiàng)的參數(shù)是? ? 我們需要同時(shí)訓(xùn)練模型的權(quán)值w和詞向量x。對(duì)于權(quán)值來將,我們需要一個(gè)d維度向量的輸入和一個(gè)C維度向量輸出,所以是C*d;對(duì)于詞向量來說,我們?cè)~匯表有v個(gè)詞匯,每個(gè)詞匯的維度是d維,所以是|v|*d ? ????6. 如果我們調(diào)整好 λ 這個(gè)超參數(shù)的值,這會(huì)降低損失函數(shù)出現(xiàn)很大值的參數(shù)的可能性因?yàn)閼土P項(xiàng)的存在,同時(shí),這個(gè)也能提高模型的泛化能力 ?Window Classi?cation

我們通常的輸入不是一個(gè)單詞

更多的情況,我們模型的輸入是一個(gè)單詞序列(取決于你的問題的情況,確認(rèn)窗口的大小),一般來講,較窄的窗口會(huì)在句法測(cè)試中會(huì)存在更好的性能,而更寬的窗口在語義測(cè)試中表現(xiàn)更好

敲公式敲累了,偷個(gè)懶,這里就是在softmax里面我們擴(kuò)展到你窗口大小就行

本文推薦閱讀論文:

Improving Distributional Similarity with Lessons Learned from Word Embeddings

Evaluation methods for unsupervised word embeddings

責(zé)任編輯:xj

原文標(biāo)題:【CS224N筆記】詞向量和詞義

文章出處:【微信公眾號(hào):深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 向量
    +關(guān)注

    關(guān)注

    0

    文章

    55

    瀏覽量

    12004
  • WordNet
    +關(guān)注

    關(guān)注

    0

    文章

    4

    瀏覽量

    7608

原文標(biāo)題:【CS224N筆記】詞向量和詞義

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    京東關(guān)鍵的應(yīng)用

    京東關(guān)鍵應(yīng)用核心是圍繞搜索匹配與流量獲取,貫穿商品上架、搜索優(yōu)化、付費(fèi)推廣、精細(xì)化運(yùn)營等全鏈路,以精準(zhǔn)匹配用戶需求、提升排名與轉(zhuǎn)化為目標(biāo)。以下是具體應(yīng)用與實(shí)操方法: 一、關(guān)鍵分類與篩選
    的頭像 發(fā)表于 01-20 09:05 ?230次閱讀

    淘寶搜索API:長尾挖掘,SEO提升的利器!

    ? 在淘寶這個(gè)巨大的生態(tài)中,商品能否被買家精準(zhǔn)地搜索到,直接關(guān)系到店鋪的流量和轉(zhuǎn)化。而搜索優(yōu)化的核心之一,就是關(guān)鍵策略。除了競(jìng)爭(zhēng)激烈的頭部熱, 長尾關(guān)鍵 往往蘊(yùn)含著巨大的潛力。它們搜索意圖明確
    的頭像 發(fā)表于 01-09 14:48 ?164次閱讀
    淘寶搜索API:長尾<b class='flag-5'>詞</b>挖掘,SEO提升的利器!

    京東關(guān)鍵的應(yīng)用場(chǎng)景

    京東關(guān)鍵在 API 層面的應(yīng)用,是串聯(lián) 商品檢索、數(shù)據(jù)運(yùn)營、商業(yè)決策、工具開發(fā) 的核心紐帶,結(jié)合京東開放平臺(tái) API(如商品查詢、聯(lián)盟推廣、數(shù)據(jù)統(tǒng)計(jì)類接口),其應(yīng)用場(chǎng)景覆蓋電商全鏈路的技術(shù)與商業(yè)
    的頭像 發(fā)表于 01-08 13:38 ?193次閱讀

    淺談京東關(guān)鍵

    一、京東搜索關(guān)鍵的核心特性 支持中文直接搜索 :京東官網(wǎng)支持中文關(guān)鍵輸入(如 “筆記本電腦”、“華為手機(jī)”),但在 HTTP 請(qǐng)求中,中文關(guān)鍵會(huì)被自動(dòng)進(jìn)行 URL 編碼 (將中文轉(zhuǎn)換為%XX
    的頭像 發(fā)表于 01-04 10:40 ?217次閱讀

    Vector向量指令集簡介(一)

    RV32V將數(shù)據(jù)寄存器和長度與向量寄存器關(guān)聯(lián)而不是指令操作碼。程序在執(zhí)行V指令之前會(huì)用數(shù)據(jù)類型和數(shù)據(jù)寬度來標(biāo)記向量寄存器,因?yàn)槊總€(gè)V指令通常有8個(gè)整數(shù)版本和三個(gè)浮點(diǎn)版本。 這個(gè)編碼一共5位,低
    發(fā)表于 10-23 08:28

    Vector向量指令集簡介(三)

    首先是vl寄存器,這個(gè)寄存器保存一個(gè)無符號(hào)數(shù),位寬為XLEN,表示向量指令的結(jié)果將要更新的元素的數(shù)量。這個(gè)寄存器通過vset{i}vl{i}指令來更新 vlenb寄存器是一個(gè)只讀的寄存器,它記錄
    發(fā)表于 10-23 06:23

    Vector向量指令集簡介(二)

    上次我們講vtype講到一般,今天把剩下的部分給講完。 Vma和vta表示的是向量尾部不可知與向量掩碼不可知的設(shè)置位。 這兩個(gè)位的值,都是在設(shè)置為0的時(shí)候表示未受干擾,設(shè)置為1的時(shí)候表示
    發(fā)表于 10-23 06:05

    Vector向量指令集簡介(四)

    前面講的都是狀態(tài)寄存器的概念介紹,今天開始講解Vector向量指令的指令格式。 對(duì)于load/store兩類指令,它們都是對(duì)內(nèi)存直接操作的指令。 比較值得說的是,rs1的值索引的是內(nèi)存的基地
    發(fā)表于 10-22 06:06

    使用MATLAB的支持向量機(jī)解決方案

    支持向量機(jī) (SVM) 是一種有監(jiān)督機(jī)器學(xué)習(xí)算法,它能找到分離兩個(gè)類的數(shù)據(jù)點(diǎn)的最佳超平面。
    的頭像 發(fā)表于 10-21 15:00 ?519次閱讀
    使用MATLAB的支持<b class='flag-5'>向量</b>機(jī)解決方案

    搜索關(guān)鍵獲取商品詳情接口的設(shè)計(jì)與實(shí)現(xiàn)

    ? ??在電商、內(nèi)容平臺(tái)等應(yīng)用中,用戶經(jīng)常通過輸入關(guān)鍵搜索商品并獲取詳情。設(shè)計(jì)一個(gè)高效、可靠的API接口是核心需求。本文將逐步介紹如何設(shè)計(jì)并實(shí)現(xiàn)一個(gè)“搜索關(guān)鍵獲取商品詳情”的接口,涵蓋
    的頭像 發(fā)表于 10-20 15:37 ?419次閱讀
    搜索關(guān)鍵<b class='flag-5'>詞</b>獲取商品詳情接口的設(shè)計(jì)與實(shí)現(xiàn)

    在中斷向量表中,數(shù)字較小的中斷向量能否以 larg 中斷中斷向量?

    在中斷向量表中,數(shù)字較小的中斷向量能否以 larg 中斷中斷向量
    發(fā)表于 08-21 08:17

    Copilot操作指南(二):使用預(yù)置提示管理您自己的“工具”

    “ ?新版本的 Copilot 支持 Prompt 提示的保存、導(dǎo)入及導(dǎo)出。您可以直接調(diào)用常用的提示,結(jié)合與圖紙的交互功能,快速實(shí)現(xiàn)一些非??岬墓δ?。? ” 預(yù)置 Prompt 提示
    的頭像 發(fā)表于 07-21 11:15 ?3515次閱讀
    Copilot操作指南(二):使用預(yù)置提示<b class='flag-5'>詞</b>管理您自己的“工具”

    milvus向量數(shù)據(jù)庫的主要特性和應(yīng)用場(chǎng)景

    Milvus 是一個(gè)開源的向量數(shù)據(jù)庫,專門為處理和分析大規(guī)模向量數(shù)據(jù)而設(shè)計(jì)。它適用于需要高效存儲(chǔ)、檢索和管理向量數(shù)據(jù)的應(yīng)用場(chǎng)景,如機(jī)器學(xué)習(xí)、人工智能、計(jì)算機(jī)視覺和自然語言處理等。
    的頭像 發(fā)表于 07-04 11:36 ?938次閱讀
    milvus<b class='flag-5'>向量</b>數(shù)據(jù)庫的主要特性和應(yīng)用場(chǎng)景

    RISC-V架構(gòu)下的編譯器自動(dòng)向量

    進(jìn)迭時(shí)空專注于研發(fā)基于RISC-V的高性能新AICPU,對(duì)于充分發(fā)揮CPU核的性能而言,編譯器是不可或缺的一環(huán),而在AI時(shí)代,毫無疑問向量算力將發(fā)揮越來越重要的作用。進(jìn)迭時(shí)空非常重視RISC-V
    的頭像 發(fā)表于 06-06 16:59 ?1090次閱讀
    RISC-V架構(gòu)下的編譯器自動(dòng)<b class='flag-5'>向量</b>化

    Redis 8 向量搜索實(shí)測(cè):輕松擴(kuò)展至 10 億向量

    艾體寶Redis 8 向量搜索實(shí)測(cè)輕松支持 10 億向量,仍保持低延遲與高吞吐。中位延遲僅200毫秒,90%精確度;處理50并發(fā)搜索請(qǐng)求中位延遲僅1.3秒,95%精確度。
    的頭像 發(fā)表于 05-13 14:00 ?646次閱讀
    Redis 8 <b class='flag-5'>向量</b>搜索實(shí)測(cè):輕松擴(kuò)展至 10 億<b class='flag-5'>向量</b>