chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

計算機視覺CV領域圖像分類方向文獻和代碼的超全總結(jié)和列表!

新機器視覺 ? 來源:新機器視覺 ? 作者:新機器視覺 ? 2020-11-03 10:08 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

今天給大家介紹自 2014 年以來,計算機視覺 CV 領域圖像分類方向文獻和代碼的超全總結(jié)和列表!總共涉及 36 種 ConvNet 模型。該 GitHub 項目作者是 weiaicunzai,項目地址是:

https://github.com/weiaicunzai/awesome-image-classification

背景

我相信圖像識別是深入到其它機器視覺領域一個很好的起點,特別是對于剛剛?cè)腴T深度學習的人來說。當我初學 CV 時,犯了很多錯。我當時非常希望有人能告訴我應該從哪一篇論文開始讀起。到目前為止,似乎還沒有一個像 deep-learning-object-detection 這樣的 GitHub 項目。因此,我決定建立一個 GitHub 項目,列出深入學習中關于圖像分類的論文和代碼,以幫助其他人。

對于學習路線,我的個人建議是,對于那些剛?cè)腴T深度學習的人,可以試著從 vgg 開始,然后是 googlenet、resnet,之后可以自由地繼續(xù)閱讀列出的其它論文或切換到其它領域。

性能表

基于簡化的目的,我只從論文中列舉出在 ImageNet 上準確率最高的 top1 和 top5。注意,這并不一定意味著準確率越高,一個網(wǎng)絡就比另一個網(wǎng)絡更好。因為有些網(wǎng)絡專注于降低模型復雜性而不是提高準確性,或者有些論文只給出 ImageNet 上的 single crop results,而另一些則給出模型融合或 multicrop results。

關于性能表的標注:

ConvNet:卷積神經(jīng)網(wǎng)絡的名稱

ImageNet top1 acc:論文中基于 ImageNet 數(shù)據(jù)集最好的 top1 準確率

ImageNet top5 acc:論文中基于 ImageNet 數(shù)據(jù)集最好的 top5 準確率

Published In:論文發(fā)表在哪個會議或期刊

論文&代碼

1. VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition.

Karen Simonyan, Andrew Zisserman

pdf: https://arxiv.org/abs/1409.1556

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

2. GoogleNet

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

pdf:https://arxiv.org/abs/1409.4842

code: unofficial-tensorflow :

https://github.com/conan7882/GoogLeNet-Inception

code: unofficial-caffe :

https://github.com/lim0606/caffe-googlenet-bn

3.PReLU-nets

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1502.01852

code: unofficial-chainer :

https://github.com/nutszebra/prelu_net

4.ResNet

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1512.03385

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py

code: unofficial-keras :

https://github.com/raghakot/keras-resnet

code: unofficial-tensorflow :

https://github.com/ry/tensorflow-resnet

5.PreActResNet

Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1603.05027

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua

code: official :

https://github.com/KaimingHe/resnet-1k-layers

code: unoffical-pytorch :

https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py

code: unoffical-mxnet :

https://github.com/tornadomeet/ResNet

6.Inceptionv3

Rethinking the Inception Architecture for Computer Vision

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

pdf:https://arxiv.org/abs/1512.00567

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py

7.Inceptionv4 && Inception-ResNetv2

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

pdf:https://arxiv.org/abs/1602.07261

code: unofficial-keras :

https://github.com/kentsommer/keras-inceptionV4

code: unofficial-keras :

https://github.com/titu1994/Inception-v4

code: unofficial-keras :

https://github.com/yuyang-huang/keras-inception-resnet-v2

8. RIR

Resnet in Resnet: Generalizing Residual Architectures

Sasha Targ, Diogo Almeida, Kevin Lyman

pdf:https://arxiv.org/abs/1603.08029

code: unofficial-tensorflow :

https://github.com/SunnerLi/RiR-Tensorflow

code: unofficial-chainer :

https://github.com/nutszebra/resnet_in_resnet

9.Stochastic Depth ResNet

Deep Networks with Stochastic Depth

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger

pdf:https://arxiv.org/abs/1603.09382

code: unofficial-torch :

https://github.com/yueatsprograms/Stochastic_Depth

code: unofficial-chainer :

https://github.com/yasunorikudo/chainer-ResDrop

code: unofficial-keras :

https://github.com/dblN/stochastic_depth_keras

10.WRN

Wide Residual Networks

Sergey Zagoruyko, Nikos Komodakis

pdf:https://arxiv.org/abs/1605.07146

code: official :

https://github.com/szagoruyko/wide-residual-networks

code: unofficial-pytorch :

https://github.com/xternalz/WideResNet-pytorch

code: unofficial-keras :

https://github.com/asmith26/wide_resnets_keras

code: unofficial-pytorch :

https://github.com/meliketoy/wide-resnet.pytorch

11.squeezenet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size?

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

pdf:https://arxiv.org/abs/1602.07360

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py

code: unofficial-caffe :

https://github.com/DeepScale/SqueezeNet

code: unofficial-keras :

https://github.com/rcmalli/keras-squeezenet

code: unofficial-caffe :

https://github.com/songhan/SqueezeNet-Residual

12.GeNet

Genetic CNN

Lingxi Xie, Alan Yuille

pdf:https://arxiv.org/abs/1703.01513

code: unofficial-tensorflow :

https://github.com/aqibsaeed/Genetic-CNN

12.MetaQNN

Designing Neural Network Architectures using Reinforcement Learning

Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

pdf:https://arxiv.org/abs/1703.01513

code: official :https://github.com/bowenbaker/metaqnn

13.PyramidNet

Deep Pyramidal Residual Networks

Dongyoon Han, Jiwhan Kim, Junmo Kim

pdf:https://arxiv.org/abs/1610.02915

code: official :

https://github.com/jhkim89/PyramidNet

code: unofficial-pytorch :

https://github.com/dyhan0920/PyramidNet-PyTorch

14.DenseNet

Densely Connected Convolutional Networks

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1608.06993

code: official :

https://github.com/liuzhuang13/DenseNet

code: unofficial-keras :

https://github.com/titu1994/DenseNet

code: unofficial-caffe :

https://github.com/shicai/DenseNet-Caffe

code: unofficial-tensorflow :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/bamos/densenet.pytorch

code: unofficial-keras :

https://github.com/flyyufelix/DenseNet-Keras

15.FractalNet

FractalNet: Ultra-Deep Neural Networks without Residuals

Gustav Larsson, Michael Maire, Gregory Shakhnarovich

pdf:https://arxiv.org/abs/1605.07648

code: unofficial-caffe :

https://github.com/gustavla/fractalnet

code: unofficial-keras :

https://github.com/snf/keras-fractalnet

code: unofficial-tensorflow :

https://github.com/tensorpro/FractalNet

16.ResNext

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He

pdf:https://arxiv.org/abs/1611.05431

code: official :

https://github.com/facebookresearch/ResNeXt

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py

code: unofficial-pytorch :

https://github.com/prlz77/ResNeXt.pytorch

code: unofficial-keras :

https://github.com/titu1994/Keras-ResNeXt

code: unofficial-tensorflow :

https://github.com/taki0112/ResNeXt-Tensorflow

code: unofficial-tensorflow :

https://github.com/wenxinxu/ResNeXt-in-tensorflow

17.IGCV1

Interleaved Group Convolutions for Deep Neural Networks

Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang

pdf:https://arxiv.org/abs/1707.02725

code official :

https://github.com/hellozting/InterleavedGroupConvolutions

18.Residual Attention Network

Residual Attention Network for Image Classification

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang

pdf:https://arxiv.org/abs/1704.06904

code: official :

https://github.com/fwang91/residual-attention-network

code: unofficial-pytorch :

https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch

code: unofficial-gluon :

https://github.com/PistonY/ResidualAttentionNetwork

code: unofficial-keras :

https://github.com/koichiro11/residual-attention-network

19.Xception

Xception: Deep Learning with Depthwise Separable Convolutions

Fran?ois Chollet

pdf:https://arxiv.org/abs/1610.02357

code: unofficial-pytorch :

https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py

code: unofficial-tensorflow :

https://github.com/kwotsin/TensorFlow-Xception

code: unofficial-caffe :

https://github.com/yihui-he/Xception-caffe

code: unofficial-pytorch :

https://github.com/tstandley/Xception-PyTorch

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py

20.MobileNet

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

pdf:https://arxiv.org/abs/1704.04861

code: unofficial-tensorflow :

https://github.com/Zehaos/MobileNet

code: unofficial-caffe :

https://github.com/shicai/MobileNet-Caffe

code: unofficial-pytorch :

https://github.com/marvis/pytorch-mobilenet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

21.PolyNet

PolyNet: A Pursuit of Structural Diversity in Very Deep Networks

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

pdf:https://arxiv.org/abs/1611.05725

code: official :

https://github.com/open-mmlab/polynet

22.DPN

Dual Path Networks

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

pdf:https://arxiv.org/abs/1707.01629

code: official :

https://github.com/cypw/DPNs

code: unoffical-keras :

https://github.com/titu1994/Keras-DualPathNetworks

code: unofficial-pytorch :

https://github.com/oyam/pytorch-DPNs

code: unofficial-pytorch :

https://github.com/rwightman/pytorch-dpn-pretrained

23.Block-QNN

Practical Block-wise Neural Network Architecture Generation

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu

pdf:https://arxiv.org/abs/1708.05552

24.CRU-Net

Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks

Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng

pdf:https://arxiv.org/abs/1703.02180

code official :

https://github.com/cypw/CRU-Net

code unofficial-mxnet :

https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet

25.ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

pdf:https://arxiv.org/abs/1707.01083

code: unofficial-tensorflow :

https://github.com/MG2033/ShuffleNet

code: unofficial-pytorch :

https://github.com/jaxony/ShuffleNet

code: unofficial-caffe :

https://github.com/farmingyard/ShuffleNet

code: unofficial-keras :

https://github.com/scheckmedia/keras-shufflenet

26.CondenseNet

CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1711.09224

code: official :

https://github.com/ShichenLiu/CondenseNet

code: unofficial-tensorflow :

https://github.com/markdtw/condensenet-tensorflow

27.NasNet

Learning Transferable Architectures for Scalable Image Recognition

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

pdf:https://arxiv.org/abs/1707.07012

code: unofficial-keras :

https://github.com/titu1994/Keras-NASNet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py

code: unofficial-pytorch :

https://github.com/wandering007/nasnet-pytorch

code: unofficial-tensorflow :

https://github.com/yeephycho/nasnet-tensorflow

28.MobileNetV2

MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

pdf:https://arxiv.org/abs/1801.04381

code: unofficial-keras :

https://github.com/xiaochus/MobileNetV2

code: unofficial-pytorch :

https://github.com/Randl/MobileNetV2-pytorch

code: unofficial-tensorflow :

https://github.com/neuleaf/MobileNetV2

29.IGCV2

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks

Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi

pdf:https://arxiv.org/abs/1804.06202

30.hier

Hierarchical Representations for Efficient Architecture Search

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu

pdf:https://arxiv.org/abs/1711.00436

31.PNasNet

Progressive Neural Architecture Search

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

pdf:https://arxiv.org/abs/1712.00559

code: tensorflow-slim :

https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py

code: unofficial-pytorch :

https://github.com/chenxi116/PNASNet.pytorch

code: unofficial-tensorflow :

https://github.com/chenxi116/PNASNet.TF

32.AmoebaNet

Regularized Evolution for Image Classifier Architecture Search

Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le

pdf:https://arxiv.org/abs/1802.01548

code: tensorflow-tpu :

https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net

33.SENet

Squeeze-and-Excitation Networks

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu

pdf:https://arxiv.org/abs/1709.01507

code: official :

https://github.com/hujie-frank/SENet

code: unofficial-pytorch :

https://github.com/moskomule/senet.pytorch

code: unofficial-tensorflow :

https://github.com/taki0112/SENet-Tensorflow

code: unofficial-caffe :

https://github.com/shicai/SENet-Caffe

code: unofficial-mxnet :

https://github.com/bruinxiong/SENet.mxnet

34.ShuffleNetV2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun

pdf:https://arxiv.org/abs/1807.11164

code: unofficial-pytorch :

https://github.com/Randl/ShuffleNetV2-pytorch

code: unofficial-keras :

https://github.com/opconty/keras-shufflenetV2

code: unofficial-pytorch :

https://github.com/Bugdragon/ShuffleNet_v2_PyTorch

code: unofficial-caff2:

https://github.com/wolegechu/ShuffleNetV2.Caffe2

35.IGCV3

IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks

Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang

pdf:https://arxiv.org/abs/1806.00178

code: official :

https://github.com/homles11/IGCV3

code: unofficial-pytorch :

https://github.com/xxradon/IGCV3-pytorch

code: unofficial-tensorflow :

https://github.com/ZHANG-SHI-CHANG/IGCV3

36.MNasNet

MnasNet: Platform-Aware Neural Architecture Search for Mobile

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le

pdf:https://arxiv.org/abs/1807.11626

code: unofficial-pytorch :

https://github.com/AnjieZheng/MnasNet-PyTorch

code: unofficial-caffe :

https://github.com/LiJianfei06/MnasNet-caffe

code: unofficial-MxNet :

https://github.com/chinakook/Mnasnet.MXNet

code: unofficial-keras :

https://github.com/Shathe/MNasNet-Keras-Tensorflow

責任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • CV
    CV
    +關注

    關注

    0

    文章

    54

    瀏覽量

    17350
  • 圖像分類
    +關注

    關注

    0

    文章

    96

    瀏覽量

    12352
  • 計算機視覺
    +關注

    關注

    9

    文章

    1713

    瀏覽量

    47325

原文標題:?CV 圖像分類常見的 36 個模型匯總!附完整論文和代碼

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    什么是機器視覺及其功能?

    機器視覺本質(zhì)上是一個系統(tǒng)(例如一臺計算機)查看的能力。系統(tǒng)通過該能力分析圖像,然后作出決策或進行分類。
    的頭像 發(fā)表于 09-10 17:23 ?431次閱讀
    什么是機器<b class='flag-5'>視覺</b>及其功能?

    易控智駕榮獲計算機視覺頂會CVPR 2025認可

    近日,2025年國際計算機視覺與模式識別頂級會議(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美國田納西州納什維爾召開。
    的頭像 發(fā)表于 07-29 16:54 ?841次閱讀

    工業(yè)相機圖像采集卡:機器視覺的核心樞紐

    工業(yè)相機圖像采集卡是用于連接工業(yè)相機與計算機的關鍵硬件設備,主要負責將相機輸出的圖像信號轉(zhuǎn)換為計算機可處理的數(shù)字信號,并實現(xiàn)高速、穩(wěn)定的數(shù)據(jù)傳輸。它在工業(yè)自動化、機器
    的頭像 發(fā)表于 05-21 12:13 ?375次閱讀
    工業(yè)相機<b class='flag-5'>圖像</b>采集卡:機器<b class='flag-5'>視覺</b>的核心樞紐

    基于LockAI視覺識別模塊:C++使用圖像的統(tǒng)計信息

    ./Test-Image-information-statistics 5.2 運行效果 在運行上述代碼時,會輸出以下結(jié)果: 6. 總結(jié) 通過上述內(nèi)容,我們介紹了如何使用 OpenCV 提取圖像的 ROI、轉(zhuǎn)換顏色空間、
    發(fā)表于 05-08 10:31

    基于LockAI視覺識別模塊:C++圖像的基本運算

    圖像處理中,理解圖像的基本操作是掌握計算機視覺技術的關鍵。本文章將介紹 基于LockAI視覺識別模塊下OpenCV 中
    發(fā)表于 05-06 16:56

    基于LockAI視覺識別模塊:C++圖像采集例程

    Vision Library)是一個開源的計算機視覺庫,提供豐富的圖像處理和視頻捕獲功能。通過其VideoCapture類,開發(fā)者可以輕松調(diào)用攝像頭設備并獲取視頻流。 1.2 VideoCapture
    發(fā)表于 04-30 10:52

    英飛凌邊緣AI平臺通過Ultralytics YOLO模型增加對計算機視覺的支持

    計算機視覺的支持,擴大了當前對音頻、雷達和其他時間序列信號數(shù)據(jù)的支持范圍。在增加這項支持后,該平臺將能夠用于開發(fā)低功耗、低內(nèi)存的邊緣AI視覺模型。這將給諸多應用領域的機器學習開發(fā)人員
    的頭像 發(fā)表于 03-11 15:11 ?565次閱讀
    英飛凌邊緣AI平臺通過Ultralytics YOLO模型增加對<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>的支持

    Arm KleidiCV與OpenCV集成助力移動端計算機視覺性能優(yōu)化

    生成式及多模態(tài)人工智能 (AI) 工作負載的廣泛增長,推動了對計算機視覺 (CV) 技術日益高漲的需求。此類技術能夠解釋并分析源自現(xiàn)實世界的視覺信息,并可應用于人臉識別、照片
    的頭像 發(fā)表于 02-24 10:15 ?762次閱讀

    AR和VR中的計算機視覺

    ):計算機視覺引領混合現(xiàn)實體驗增強現(xiàn)實(AR)和虛擬現(xiàn)實(VR)正在徹底改變我們與外部世界的互動方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1856次閱讀
    AR和VR中的<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>

    云端超級計算機使用教程

    云端超級計算機是一種基于云計算的高性能計算服務,它將大量計算資源和存儲資源集中在一起,通過網(wǎng)絡向用戶提供按需的計算服務。下面,AI部落小編為
    的頭像 發(fā)表于 12-17 10:19 ?743次閱讀

    AI模型部署邊緣設備的奇妙之旅:如何在邊緣端部署OpenCV

    、車輛和其他重要元素。 2 基礎知識 OpenCV 是一個開源的計算機視覺和機器學習軟件庫,廣泛用于圖像處理、視頻捕捉、物體檢測等領域。一些常用操作及其目的: 讀取圖片 使用
    發(fā)表于 12-14 09:31

    工業(yè)中使用哪種計算機?

    在工業(yè)環(huán)境中,工控機被廣泛使用。這些計算機的設計可承受極端溫度、灰塵和振動等惡劣條件。它們比標準消費類計算機更耐用、更可靠。工業(yè)計算機可控制機器、監(jiān)控流程并實時收集數(shù)據(jù)。其堅固的結(jié)構和專業(yè)功能
    的頭像 發(fā)表于 11-29 14:07 ?918次閱讀
    工業(yè)中使用哪種<b class='flag-5'>計算機</b>?

    量子計算機與普通計算機工作原理的區(qū)別

    ? 本文介紹了量子計算機與普通計算機工作原理的區(qū)別。 量子計算是一個新興的研究領域,科學家們利用量子力學,制造出具有革命性能力的計算機。雖然
    的頭像 發(fā)表于 11-24 11:00 ?2158次閱讀
    量子<b class='flag-5'>計算機</b>與普通<b class='flag-5'>計算機</b>工作原理的區(qū)別

    工業(yè)計算機類型介紹

    工業(yè)領域沒有計算機的世界就像沒有管弦樂隊的交響樂,缺乏實現(xiàn)最佳性能所需的和諧和精確度。計算機徹底改變了工業(yè)的運作方式,將效率、準確性和創(chuàng)新推向了新的高度。事實上,根據(jù)最近在印度進行的一項研究
    的頭像 發(fā)表于 11-04 15:56 ?851次閱讀
    工業(yè)<b class='flag-5'>計算機</b>類型介紹

    【小白入門必看】一文讀懂深度學習計算機視覺技術及學習路線

    ,幫我們做決定。整個過程就是為了讓機器能看懂圖像,然后根據(jù)這些圖像來做出聰明的選擇。二、計算機視覺實現(xiàn)起來難嗎?人類依賴視覺,找輛汽車輕而易
    的頭像 發(fā)表于 10-31 17:00 ?1591次閱讀
    【小白入門必看】一文讀懂深度學習<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術及學習路線