chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度神經(jīng)網(wǎng)絡(luò)是為人工智能的重要基石

姚小熊27 ? 來(lái)源: 科技行者 ? 作者: 科技行者 ? 2020-11-25 09:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度神經(jīng)網(wǎng)絡(luò)是一種使用數(shù)學(xué)模型處理圖像以及其他數(shù)據(jù)的多層系統(tǒng),而且目前已經(jīng)發(fā)展為人工智能的重要基石。

深度神經(jīng)網(wǎng)絡(luò)得出的結(jié)果看似復(fù)雜,但同樣有可能受到誤導(dǎo)。而這樣的誤導(dǎo)輕則致使其將一種動(dòng)物錯(cuò)誤識(shí)別為另一種動(dòng)物,重則在自動(dòng)駕駛汽車(chē)上將停車(chē)標(biāo)志誤解為正常前進(jìn)。

休斯敦大學(xué)的一位哲學(xué)家在發(fā)表于《自然機(jī)器智能》上的一篇論文中提到,關(guān)于這些假想問(wèn)題背后的普遍假設(shè),在于誤導(dǎo)性信息可能給這類(lèi)網(wǎng)絡(luò)的可靠性造成嚴(yán)重影響。

隨著機(jī)器學(xué)習(xí)以及其他形式的人工智能越來(lái)越深入滲透至社會(huì),其用途也開(kāi)始涵蓋從ATM機(jī)到網(wǎng)絡(luò)安全系統(tǒng)的廣泛領(lǐng)域。哲學(xué)系副教授Cameron Buckner表示,正是這種普及,讓了解明顯錯(cuò)誤的來(lái)源變得無(wú)比重要。研究人員們將這類(lèi)信息稱(chēng)為“對(duì)抗性示例”,指當(dāng)深度神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)過(guò)程中遇到訓(xùn)練輸入之外的其他信息時(shí),則很有可能總結(jié)出錯(cuò)誤的結(jié)論、最終引發(fā)圖像或數(shù)據(jù)誤判。之所以被表述為“對(duì)抗性”,是因?yàn)檫@樣的問(wèn)題往往只能由另一機(jī)器學(xué)習(xí)網(wǎng)絡(luò)所產(chǎn)生或發(fā)現(xiàn)。作為機(jī)器學(xué)習(xí)領(lǐng)域中的一種前沿技術(shù),對(duì)抗雙方將不斷升級(jí)自身能力,以更復(fù)雜的方法嘗試實(shí)現(xiàn)干擾與反干擾。

Buckner提到,“但這種對(duì)抗有時(shí)候可能源自人為誤導(dǎo),因此要想更好地了解神經(jīng)網(wǎng)絡(luò)的可靠性,我們必須對(duì)誤導(dǎo)問(wèn)題做出深入研究?!?/p>

換言之,這種誤導(dǎo)結(jié)果很可能源自網(wǎng)絡(luò)需要處理的內(nèi)容、與所涉及的實(shí)際模式之間的某種相互作用所引發(fā)。這與傳統(tǒng)意義上的誤導(dǎo),似乎還不完全是同一種概念。

Buckner寫(xiě)道,“理解對(duì)抗性整合的含義,可能需要探索第三種可能性:其中至少有一部分模式屬于人為創(chuàng)造。因此,目前的難題在于,直接丟棄這些模式可能有損模型學(xué)習(xí),但直接使用則具有潛在風(fēng)險(xiǎn)?!?/p>

引發(fā)機(jī)器學(xué)習(xí)系統(tǒng)錯(cuò)誤的對(duì)抗性事件除了無(wú)心而發(fā),更可能是有意為之。Buckner認(rèn)為這才是更嚴(yán)重的風(fēng)險(xiǎn),“意味著惡意攻擊者可能會(huì)欺騙某些本應(yīng)可靠的系統(tǒng),例如安全類(lèi)應(yīng)用程序?!?/p>

例如,基于人臉識(shí)別技術(shù)的安全系統(tǒng)很可能遭遇黑客入侵,導(dǎo)致違規(guī)行為的出現(xiàn);或者在交通標(biāo)志上張貼某些圖形,導(dǎo)致自動(dòng)駕駛汽車(chē)產(chǎn)生意外誤解。

先前的研究發(fā)現(xiàn),與人們的預(yù)期相反,使用場(chǎng)景中天然存在著一些對(duì)抗性示例,即機(jī)器學(xué)習(xí)系統(tǒng)有可能因?yàn)橐馔饨换ィǘ且驍?shù)據(jù)錯(cuò)誤)而產(chǎn)生誤解。這類(lèi)情況相當(dāng)罕見(jiàn),必須通過(guò)其他人工智能技術(shù)才可能發(fā)現(xiàn)。

但這些問(wèn)題又真實(shí)存在,要求研究人員重新考慮該如何辨別自然異常與人為誤導(dǎo)。

事實(shí)上,我們對(duì)這類(lèi)人為誤導(dǎo)的理解并不清晰。但這有點(diǎn)像是相機(jī)鏡頭上時(shí)不時(shí)出現(xiàn)的光暈,類(lèi)似于依靠光暈來(lái)判斷畫(huà)面中太陽(yáng)的位置,研究人員似乎也可以借助這樣的蛛絲馬跡推斷機(jī)器學(xué)習(xí)中的惡意誤導(dǎo)方法。

更重要的是,這種新的思考方式也將影響人們?cè)谏疃壬窠?jīng)網(wǎng)絡(luò)中使用工件的方式,包括不應(yīng)簡(jiǎn)單將誤解結(jié)論視為深度學(xué)習(xí)無(wú)效。

他總結(jié)道,“某些對(duì)抗性事件很可能是人為設(shè)計(jì)而來(lái)。我們必須知曉其中的手法與工件是什么,這樣才能真正理解深度神經(jīng)網(wǎng)絡(luò)的可靠性?!?br /> 責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    NMSIS NN 軟件庫(kù)是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫(kù)分為多個(gè)功能,每個(gè)功能涵蓋特定類(lèi)別
    發(fā)表于 10-29 06:08

    人工智能工程師高頻面試題匯總:循環(huán)神經(jīng)網(wǎng)絡(luò)篇(題目+答案)

    后臺(tái)私信雯雯老師,備注:循環(huán)神經(jīng)網(wǎng)絡(luò),領(lǐng)取更多相關(guān)面試題隨著人工智能技術(shù)的突飛猛進(jìn),AI工程師成為了眾多求職者夢(mèng)寐以求的職業(yè)。想要拿下這份工作,面試的時(shí)候得展示出你不僅技術(shù)過(guò)硬,還得能解決問(wèn)題。所以
    的頭像 發(fā)表于 10-17 16:36 ?495次閱讀
    <b class='flag-5'>人工智能</b>工程師高頻面試題匯總:循環(huán)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>篇(題目+答案)

    神經(jīng)網(wǎng)絡(luò)的并行計(jì)算與加速技術(shù)

    隨著人工智能技術(shù)的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和廣泛的應(yīng)用前景。然而,神經(jīng)網(wǎng)絡(luò)模型的復(fù)雜度和規(guī)模也在不斷增加,這使得傳統(tǒng)的串行計(jì)算方式面臨著巨大的挑戰(zhàn),如計(jì)算速度慢、訓(xùn)練時(shí)間長(zhǎng)等
    的頭像 發(fā)表于 09-17 13:31 ?898次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計(jì)算與加速技術(shù)

    如何在機(jī)器視覺(jué)中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習(xí)的目標(biāo)檢測(cè)可定位已訓(xùn)練的目標(biāo)類(lèi)別,并通過(guò)矩形框(邊界框)對(duì)其進(jìn)行標(biāo)識(shí)。 在討論人工智能(AI)或深度學(xué)習(xí)時(shí),經(jīng)常會(huì)出現(xiàn)“神經(jīng)網(wǎng)絡(luò)”、“黑箱”、“標(biāo)注”等術(shù)語(yǔ)。這些概
    的頭像 發(fā)表于 09-10 17:38 ?713次閱讀
    如何在機(jī)器視覺(jué)中部署<b class='flag-5'>深度</b>學(xué)習(xí)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    利用超微型 Neuton ML 模型解鎖 SoC 邊緣人工智能

    nRF52805),只占用幾千字節(jié)的非易失性存儲(chǔ)器(NVM)。這使得以前被認(rèn)為不可能的應(yīng)用也能增加 ML 功能。例如,您現(xiàn)在可以在廣泛的傳感器網(wǎng)絡(luò)的每個(gè)節(jié)點(diǎn)上進(jìn)行人工智能處理,而在這種網(wǎng)絡(luò)中,傳感器的尺寸和成本
    發(fā)表于 08-31 20:54

    挖到寶了!人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器

    ,技術(shù)自主可控 在如今這個(gè)科技競(jìng)爭(zhēng)激烈的時(shí)代,國(guó)產(chǎn)化硬件的重要性不言而喻。比鄰星人工智能綜合實(shí)驗(yàn)箱就做到了這一點(diǎn),采用國(guó)產(chǎn)化硬件,積極推進(jìn)全行業(yè)產(chǎn)業(yè)鏈上下游環(huán)節(jié)的國(guó)產(chǎn)化進(jìn)程,把國(guó)產(chǎn)自主可控的軟硬件平臺(tái)
    發(fā)表于 08-07 14:30

    挖到寶了!比鄰星人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器!

    ,技術(shù)自主可控 在如今這個(gè)科技競(jìng)爭(zhēng)激烈的時(shí)代,國(guó)產(chǎn)化硬件的重要性不言而喻。比鄰星人工智能綜合實(shí)驗(yàn)箱就做到了這一點(diǎn),采用國(guó)產(chǎn)化硬件,積極推進(jìn)全行業(yè)產(chǎn)業(yè)鏈上下游環(huán)節(jié)的國(guó)產(chǎn)化進(jìn)程,把國(guó)產(chǎn)自主可控的軟硬件平臺(tái)
    發(fā)表于 08-07 14:23

    開(kāi)售RK3576 高性能人工智能主板

    ZYSJ-2476B 高性能智能主板,采用瑞芯微 RK3576 高性能 AI 處理器、神經(jīng)網(wǎng)絡(luò)處理器 NPU, Android 14.0/debian11/ubuntu20.04 操作系統(tǒng)
    發(fā)表于 04-23 10:55

    【「芯片通識(shí)課:一本書(shū)讀懂芯片技術(shù)」閱讀體驗(yàn)】從deepseek看今天芯片發(fā)展

    的: 神經(jīng)網(wǎng)絡(luò)處理器(NPU)是一種模仿人腦神經(jīng)網(wǎng)絡(luò)的電路系統(tǒng),是實(shí)現(xiàn)人工智能神經(jīng)網(wǎng)絡(luò)計(jì)算的專(zhuān)用處理器,主要用于人工智能
    發(fā)表于 04-02 17:25

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1346次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過(guò)訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類(lèi)、回歸等任務(wù),無(wú)需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)通過(guò)訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?1612次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?1363次閱讀

    深度學(xué)習(xí)入門(mén):簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?856次閱讀

    神經(jīng)網(wǎng)絡(luò)理論研究的物理學(xué)思想介紹

    本文主要介紹神經(jīng)網(wǎng)絡(luò)理論研究的物理學(xué)思想 神經(jīng)網(wǎng)絡(luò)在當(dāng)今人工智能研究和應(yīng)用中發(fā)揮著不可替代的作用。它是人類(lèi)在理解自我(大腦)的過(guò)程中產(chǎn)生的副產(chǎn)品,以此副產(chǎn)品,人類(lèi)希望建造一個(gè)機(jī)器智能來(lái)
    的頭像 發(fā)表于 01-16 11:16 ?1322次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>理論研究的物理學(xué)思想介紹

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?2272次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法