chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用光流 + CNN的方法來(lái)預(yù)測(cè)車輛的速度

新機(jī)器視覺(jué) ? 來(lái)源:新機(jī)器視覺(jué) ? 作者:Sharif Elfouly ? 2020-11-27 09:05 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀

使用光流 + CNN的方法來(lái)預(yù)測(cè)車輛的速度,用PyTorch實(shí)現(xiàn),有代碼。

代碼:https://github.com/SharifElfouly/vehicle-speed-estimation

我想要解決的問(wèn)題是:在一輛車?yán)镉幸粋€(gè)攝像頭,我想知道車開(kāi)得有多快。你顯然不能看速度表,只能看視頻片段本身。深度學(xué)習(xí)魔法應(yīng)該能幫助我們。

數(shù)據(jù)

我有兩個(gè)不同的視頻。一個(gè)用于訓(xùn)練,另一個(gè)用于測(cè)試。訓(xùn)練視頻有20399幀,測(cè)試視頻有10797幀。視頻下載地址:https://github.com/commaai/speedchallenge。下面是一些例子:

視頻中的樣本圖像

訓(xùn)練視頻的標(biāo)簽是a .txt文件,其中每一行對(duì)應(yīng)于特定幀的速度。

方法

這個(gè)問(wèn)題最有趣的地方是你的神經(jīng)網(wǎng)絡(luò)輸入會(huì)是什么樣子。僅從一個(gè)靜態(tài)圖像計(jì)算速度是不可能的。一種有效的方法是將兩個(gè)或更多的圖像堆疊在一起,或者像LSTM或Transformer那樣連續(xù)地堆疊。另一個(gè)是計(jì)算光流,我決定用它。

什么是光流?它基本上是一種為每個(gè)像素計(jì)算矢量的方法,告訴你兩幅圖像之間的相對(duì)運(yùn)動(dòng)。有一個(gè)很棒的computerphile視頻:https://www.youtube.com/watch?v=4v_keMNROv4,你可以了解更多細(xì)節(jié)。有一些“經(jīng)典”的計(jì)算機(jī)視覺(jué)算法可以用來(lái)計(jì)算光流,但深度學(xué)習(xí)已經(jīng)變得更好了(這一點(diǎn)也不奇怪)。那么什么是SOTA方法,讓我們看看paperswithcode:

RAFT 看起來(lái)不錯(cuò),它還有PyTorch的實(shí)現(xiàn)。我forked原始存儲(chǔ)庫(kù),并使其更簡(jiǎn)單一些。我不需要訓(xùn)練,評(píng)估等等。我只會(huì)用它來(lái)推理。

計(jì)算光流

為了進(jìn)行推斷,網(wǎng)絡(luò)將兩幅圖像拼接起來(lái),并預(yù)測(cè)了一個(gè)維度為*(2, image_height, image_width)*的張量。如前所述,圖像中的每個(gè)像素對(duì)應(yīng)一個(gè)二維向量。我們將在實(shí)際訓(xùn)練中使用這些文件,因此我們將它們保存為.npy文件。如果你想象光流圖像它會(huì)是這樣的:

訓(xùn)練

記住我們訓(xùn)練的目的:

光流→模型→車速估計(jì)

我選擇的模型是EfficientNet。我非常喜歡它,因?yàn)樗目蓴U(kuò)展性。它有8個(gè)不同的版本供你選擇,最大的一個(gè),EfficientNet-B7仍然非常非常好。你可以從一個(gè)像B0這樣的小變體開(kāi)始,然后如果一切工作正常,你有一個(gè)足夠好的GPU,你可以選擇一個(gè)更大的。還有一個(gè)PyTorch庫(kù),我會(huì)使用它來(lái)非常容易地加載預(yù)先訓(xùn)練好的網(wǎng)絡(luò)模型,地址:https://github.com/lukemelas/effecentnet-PyTorch。如果你打開(kāi)[train.ipynb](https://github.com/sharifelfouly/vehicle-speed - estimate),你就可以看到訓(xùn)練是如何運(yùn)作的。

我總是從B0開(kāi)始,然后放大到B3,因?yàn)槲业腉PU只有6 GB內(nèi)存。經(jīng)過(guò)訓(xùn)練,我得到如下結(jié)果(loss為均方誤差):

訓(xùn)練損失

驗(yàn)證損失

很好,看起來(lái)一切都很正常!訓(xùn)練和驗(yàn)證損失都在降低,網(wǎng)絡(luò)沒(méi)有過(guò)擬合。

結(jié)果如下:

雖然不完美,但它確實(shí)有一些用

總結(jié)

我通常不太喜歡特征工程,但我認(rèn)為在這種情況下它做得很好。下一步是嘗試一些序列化的東西,比如Transformer或LSTM。

英文原文:https://medium.com/@selfouly/vehicle-speed-estimation-from-video-using-deep-learning-18b41babda4c

責(zé)任編輯:xj

原文標(biāo)題:使用深度學(xué)習(xí)從視頻中估計(jì)車輛的速度

文章出處:【微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8547

    瀏覽量

    136602
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5594

    瀏覽量

    124223
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    355

    瀏覽量

    23322

原文標(biāo)題:使用深度學(xué)習(xí)從視頻中估計(jì)車輛的速度

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測(cè)試

    CNN算法簡(jiǎn)介 我們硬件加速器的模型為L(zhǎng)enet-5的變型,網(wǎng)絡(luò)粗略分共有7層,細(xì)分共有13層。包括卷積,最大池化層,激活層,扁平層,全連接層。下面是各層作用介紹: 卷積層:提取特征?!安蝗?/div>
    發(fā)表于 10-29 07:49

    構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議

    通過(guò)實(shí)踐,本文總結(jié)了構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議,這些建議將會(huì)在構(gòu)建高準(zhǔn)確率輕量級(jí)CNN神經(jīng)網(wǎng)絡(luò)模型方面提供幫助。 1)避免單層神經(jīng)網(wǎng)絡(luò):我們清楚神經(jīng)網(wǎng)絡(luò)本身是需要不斷抽象出更高級(jí)別的紋理
    發(fā)表于 10-28 08:02

    蜂鳥(niǎo)E203簡(jiǎn)單分支預(yù)測(cè)的改進(jìn)

    于32位指令pc值加4,16位指令,pc值加2;當(dāng)預(yù)測(cè)為跳轉(zhuǎn)時(shí),則需要根據(jù)不同分支跳轉(zhuǎn)指令的目標(biāo)地址計(jì)算方法進(jìn)行計(jì)算。例如,JALR指令的跳轉(zhuǎn)目標(biāo)地址為指令中的16位立即數(shù)與指令中指定的寄存器中的值
    發(fā)表于 10-24 07:45

    提高條件分支指令預(yù)測(cè)正確率的方法

    的所有組合過(guò)于浪費(fèi),因此將指令地址的中部與全局歷史記錄進(jìn)行異或運(yùn)算,而當(dāng)指令地址的中部相同時(shí),指令地址下部對(duì)應(yīng)的指令共用幾個(gè)PHT項(xiàng),這樣兼顧了長(zhǎng)全局歷史表與PHT大小,改良了傳統(tǒng)分支歷史分支預(yù)測(cè)方法
    發(fā)表于 10-22 08:22

    基于全局預(yù)測(cè)歷史的gshare分支預(yù)測(cè)器的實(shí)現(xiàn)細(xì)節(jié)

    GShare預(yù)測(cè)機(jī)制簡(jiǎn)介 GShare預(yù)測(cè)機(jī)制作為一種常用的分支預(yù)測(cè)機(jī)制,通過(guò)基于分支歷史和分支地址來(lái)預(yù)測(cè)分支指令的執(zhí)行路徑。分支歷史是指
    發(fā)表于 10-22 06:50

    提高RISC-V在Drystone測(cè)試中得分的方法

    處理器設(shè)計(jì):可以通過(guò)優(yōu)化處理器核心設(shè)計(jì)來(lái)提高性能,例如通過(guò)增加更高效的分支預(yù)測(cè)機(jī)制、提升亂序執(zhí)行的能力、增大或優(yōu)化緩存等。 提高時(shí)鐘頻率:在保證穩(wěn)定性和功耗可接受的前提下,提高時(shí)鐘頻率可以提高處理器的執(zhí)行速度
    發(fā)表于 10-21 13:58

    電池?zé)峁芾恚菏褂脭?shù)字孿生和多尺度方法來(lái)設(shè)計(jì)和優(yōu)化能源效率

    理系統(tǒng)(BTMS),但同時(shí)也會(huì)增加額外的能源需求。本文介紹了一種多方面方法,不僅可用于開(kāi)發(fā)和優(yōu)化BTMS,同時(shí)還能平衡電池壽命、快速充電能力、車輛續(xù)航里程和安全性。S
    的頭像 發(fā)表于 07-23 10:50 ?713次閱讀
    電池?zé)峁芾恚菏褂脭?shù)字孿生和多尺度<b class='flag-5'>方法來(lái)</b>設(shè)計(jì)和優(yōu)化能源效率

    無(wú)刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    摘要:論文通過(guò)對(duì)無(wú)刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)轉(zhuǎn)角預(yù)測(cè),并采用改進(jìn)遺傳算法來(lái)訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    想在rtsmart中使用uart2,是不是只能通過(guò)修改設(shè)備樹(shù)方法來(lái)實(shí)現(xiàn)uart2的復(fù)用呀?

    我想在rtsmart中使用uart2,是不是只能通過(guò)修改設(shè)備樹(shù)方法來(lái)實(shí)現(xiàn)uart2的復(fù)用呀? 修改設(shè)備樹(shù)后如何只編譯設(shè)備樹(shù)文件? 編譯生成的文件可以直接替換到廬山派里嗎,具體替換路徑在哪里呀?
    發(fā)表于 06-24 07:04

    使用ad9467-250來(lái)采集低頻信號(hào),請(qǐng)問(wèn)有什么方法來(lái)提高sfdr嗎?

    你好,我現(xiàn)在在使用ad9467-250來(lái)采集低頻信號(hào),在測(cè)試3Mhz部分時(shí)sfdr只有86,采樣頻率是102.4Mhz,請(qǐng)問(wèn)有什么方法來(lái)提高sfdr嗎
    發(fā)表于 04-24 06:05

    《中國(guó)電機(jī)工程學(xué)報(bào)》網(wǎng)絡(luò)首發(fā)論文:基于數(shù)據(jù)驅(qū)動(dòng)觀測(cè)器的永磁同步電機(jī)顯式模型預(yù)測(cè)直接速度控制

    步驟一:構(gòu)造預(yù)測(cè)模型。 考慮參數(shù)變化和外部擾動(dòng),表貼式 PMSM 的數(shù) 學(xué)方程為 (1) 其中,id、iq 和 ud、uq 分別為定子電流和電壓的 d、 q 軸分量;?和?e 分別為機(jī)械角速度和電
    發(fā)表于 03-07 15:07

    PTD08A010W想把1.8V的輸出通過(guò)軟件編程的方法來(lái)改成3.3V的輸出,怎么實(shí)現(xiàn)?

    我現(xiàn)在在用VC707FPGA開(kāi)發(fā)板,上面用到了PTD08A010W這款電源芯片,這里提供的是12V轉(zhuǎn)1.8V的功能,但現(xiàn)在我想把1.8V的輸出通過(guò)軟件編程的方法來(lái)改成3.3V的輸出,請(qǐng)問(wèn)有誰(shuí)可以提供具體的幫助嗎?下面是實(shí)際的電路以及電路原理圖,我要調(diào)的電壓為VADJ_FPGA:
    發(fā)表于 03-03 07:55

    紙基微控芯片的加工方法和優(yōu)勢(shì)

    切割精度高、速度快、切口平整、無(wú)毛刺、熱影響區(qū)小等優(yōu)點(diǎn)。在紙基微控芯片的加工中,主要采用二氧化碳激光器和光纖激光器。 壓印技術(shù) 壓印技術(shù)是一種將圖案或文字壓印到材料表面的加工方法。它具有簡(jiǎn)便、快速、成本低等優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-26 15:15 ?932次閱讀

    激光速度濃度測(cè)試儀Labasys:精準(zhǔn)測(cè)量工業(yè)多相

    由瑞士的MSE Meili公司研發(fā),基于光纖探頭法的激光速度濃度測(cè)試儀 Labasys,是工業(yè)多相測(cè)量領(lǐng)域的引領(lǐng)者。Labasys 測(cè)試設(shè)備利用場(chǎng)內(nèi)的顆粒、液滴或氣泡對(duì)激光的反射特性來(lái)
    的頭像 發(fā)表于 02-25 13:25 ?673次閱讀
    激光<b class='flag-5'>速度</b>濃度測(cè)試儀Labasys:精準(zhǔn)測(cè)量工業(yè)多相<b class='flag-5'>流</b>

    用ADS1258做了一塊采集卡,請(qǐng)問(wèn)有比較簡(jiǎn)單的測(cè)試方法來(lái)測(cè)試我的采集卡的性能和精度嗎?

    您好!我現(xiàn)在用ADS1258做了一塊采集卡,請(qǐng)問(wèn)有比較簡(jiǎn)單的測(cè)試方法來(lái)測(cè)試我的采集卡的性能和精度嗎。 我現(xiàn)在用普通的信號(hào)發(fā)生器產(chǎn)生了一個(gè)正弦波,1KHz的頻率,用采集卡采集了16*1024個(gè)數(shù)
    發(fā)表于 02-10 07:49