chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

為什么半監(jiān)督學(xué)習(xí)是機器學(xué)習(xí)的未來?

深度學(xué)習(xí)自然語言處理 ? 來源:深度學(xué)習(xí)自然語言處理 ? 作者:Andre Ye ? 2020-11-27 10:42 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

為什么半監(jiān)督學(xué)習(xí)是機器學(xué)習(xí)的未來。

監(jiān)督學(xué)習(xí)是人工智能領(lǐng)域的第一種學(xué)習(xí)類型。從它的概念開始,無數(shù)的算法,從簡單的邏輯回歸到大規(guī)模的神經(jīng)網(wǎng)絡(luò),都已經(jīng)被研究用來提高精確度和預(yù)測能力。

然而,一個重大突破揭示了添加“無監(jiān)督數(shù)據(jù)”可以提高模型泛化和性能。事實上,在非常多的場景中,帶有標(biāo)簽的數(shù)據(jù)并不容易獲得。半監(jiān)督學(xué)習(xí)可以在標(biāo)準(zhǔn)的任務(wù)中實現(xiàn)SOTA的效果,只需要一小部分的有標(biāo)記數(shù)據(jù) —— 數(shù)百個訓(xùn)練樣本。

在這個我們對半監(jiān)督學(xué)習(xí)的探索中,我們會有:

半監(jiān)督學(xué)習(xí)簡介。什么是半監(jiān)督學(xué)習(xí),它與其他學(xué)習(xí)方法相比如何,半監(jiān)督學(xué)習(xí)算法的框架/思維過程是什么?

算法:Semi-Supervised GANs。與傳統(tǒng)GANs的比較,過程的解釋,半監(jiān)督GANs的性能。

用例和機器學(xué)習(xí)的未來。為什么半監(jiān)督學(xué)習(xí)會有如此大的需求,哪里可以應(yīng)用。

半監(jiān)督學(xué)習(xí)介紹

半監(jiān)督學(xué)習(xí)算法代表了監(jiān)督和非監(jiān)督算法的中間地帶。雖然沒有正式定義為機器學(xué)習(xí)的“第四個”元素(監(jiān)督、無監(jiān)督、強化),但它將前兩個方面結(jié)合成一種自己的方法。

這些算法操作的數(shù)據(jù)有一些標(biāo)簽,但大部分是沒有標(biāo)簽的。傳統(tǒng)上,人們要么選擇有監(jiān)督學(xué)習(xí)的方式,只對帶有標(biāo)簽的數(shù)據(jù)進(jìn)行操作,這將極大地減小數(shù)據(jù)集的規(guī)模,要么,就會選擇無監(jiān)督學(xué)習(xí)的方式,丟棄標(biāo)簽保留數(shù)據(jù)集的其余部分,然后做比如聚類之類的工作。

這在現(xiàn)實世界中是很常見的。由于標(biāo)注是很昂貴的,特別是大規(guī)模數(shù)據(jù)集,特別是企業(yè)用途的,可能只有幾個標(biāo)簽。例如,考慮確定用戶活動是否具有欺詐性。在100萬用戶中,該公司知道有1萬用戶是這樣的,但其他9萬用戶可能是惡意的,也可能是良性的。半監(jiān)督學(xué)習(xí)允許我們操作這些類型的數(shù)據(jù)集,而不必在選擇監(jiān)督學(xué)習(xí)或非監(jiān)督學(xué)習(xí)時做出權(quán)衡。

一般來說,半監(jiān)督學(xué)習(xí)算法在這個框架上運行:

半監(jiān)督機器學(xué)習(xí)算法使用有限的標(biāo)記樣本數(shù)據(jù)集來訓(xùn)練自己,從而形成一個“部分訓(xùn)練”的模型。

部分訓(xùn)練的模型對未標(biāo)記的數(shù)據(jù)進(jìn)行標(biāo)記。由于樣本標(biāo)記數(shù)據(jù)集有許多嚴(yán)重的限制(例如,在現(xiàn)實數(shù)據(jù)中的選擇偏差),標(biāo)記的結(jié)果被認(rèn)為是“偽標(biāo)簽”數(shù)據(jù)。

結(jié)合標(biāo)記和偽標(biāo)簽數(shù)據(jù)集,創(chuàng)建一個獨特的算法,結(jié)合描述和預(yù)測方面的監(jiān)督和非監(jiān)督學(xué)習(xí)。

半監(jiān)督學(xué)習(xí)利用分類過程來識別數(shù)據(jù)資產(chǎn),利用聚類過程將其分成不同的部分。

算法:Semi-Supervised GAN

半監(jiān)督的GAN,簡稱為SGAN,是[生成對抗網(wǎng)絡(luò)](https://medium.com/analytics-vidhya/gans-for-one -an-直覺解釋-革命概念-2f962c858b95)架構(gòu)的一個變體,用于解決半監(jiān)督學(xué)習(xí)問題。

在傳統(tǒng)的GAN中,判別器被訓(xùn)練來預(yù)測由生成器模型生成的圖像是真實的還是假的,允許它從圖像中學(xué)習(xí)判別特征,即使沒有標(biāo)簽。盡管大多數(shù)人通常在GANs中使用訓(xùn)練很好的生成器,可以生成和數(shù)據(jù)集中相似的圖像,判別器還是可以通過以轉(zhuǎn)移學(xué)習(xí)作為起點在相同的數(shù)據(jù)集上建立分類器,允許監(jiān)督任務(wù)從無監(jiān)督訓(xùn)練中受益。由于大部分的圖像特征已經(jīng)被學(xué)習(xí),因此進(jìn)行分類的訓(xùn)練時間和準(zhǔn)確率會更好。

然而,在SGAN中,判別器同時接受兩種模式的訓(xùn)練:無監(jiān)督和監(jiān)督。

在無監(jiān)督模式中,需要區(qū)分真實圖像和生成的圖像,就像在傳統(tǒng)的GAN中一樣。

在監(jiān)督模式中,需要將一幅圖像分類為幾個類,就像在標(biāo)準(zhǔn)的神經(jīng)網(wǎng)絡(luò)分類器中一樣。

為了同時訓(xùn)練這兩種模式,判別器必須輸出1 + n個節(jié)點的值,其中1表示“真或假”節(jié)點,n是預(yù)測任務(wù)中的類數(shù)。

在半監(jiān)督GAN中,對判別器模型進(jìn)行更新,預(yù)測K+1個類,其中K為預(yù)測問題中的類數(shù),并為一個新的“假”類添加額外的類標(biāo)簽。它涉及到同時訓(xùn)練無監(jiān)督分類任務(wù)和有監(jiān)督分類任務(wù)的判別器模型。整個數(shù)據(jù)集都可以通過SGAN進(jìn)行傳遞 —— 當(dāng)一個訓(xùn)練樣本有標(biāo)簽時,判別器的權(quán)值將被調(diào)整,否則,分類任務(wù)將被忽略,判別器將調(diào)整權(quán)值以更好地區(qū)分真實的圖像和生成的圖像。

雖然允許SGAN進(jìn)行無監(jiān)督訓(xùn)練,允許模型從一個非常大的未標(biāo)記數(shù)據(jù)集中學(xué)習(xí)非常有用的特征提取,但有監(jiān)督學(xué)習(xí)允許模型利用提取的特征并將其用于分類任務(wù)。其結(jié)果是一個分類器可以在像MNIST這樣的標(biāo)準(zhǔn)問題上取得令人難以置信的結(jié)果,即使是在非常非常少的標(biāo)記樣本(數(shù)十到數(shù)百個)上進(jìn)行訓(xùn)練。

SGAN巧妙地結(jié)合了無監(jiān)督和監(jiān)督學(xué)習(xí)的方面,強強聯(lián)合,以最小的標(biāo)簽量,產(chǎn)生難以置信的結(jié)果。

用例和機器學(xué)習(xí)的未來

在一個可用數(shù)據(jù)量呈指數(shù)級增長的時代,無監(jiān)督數(shù)據(jù)根本不能停下來等待標(biāo)注。無數(shù)真實世界的數(shù)據(jù)場景會像這樣出現(xiàn) —— 例如,YouTube視頻或網(wǎng)站內(nèi)容。從爬蟲引擎和內(nèi)容聚合系統(tǒng)到圖像和語音識別,半監(jiān)督學(xué)習(xí)被廣泛應(yīng)用。

半監(jiān)督學(xué)習(xí)將監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)的過擬合和“不擬合”傾向(分別)結(jié)合起來的能力,創(chuàng)建了一個模型,在給出最小數(shù)量的標(biāo)記數(shù)據(jù)和大量的未標(biāo)記數(shù)據(jù)的情況下,可以出色地執(zhí)行分類任務(wù)。除了分類任務(wù),半監(jiān)督算法還有許多其他用途,如增強聚類和異常檢測。盡管這一領(lǐng)域本身相對較新,但由于在當(dāng)今的數(shù)字領(lǐng)域中發(fā)現(xiàn)了巨大的需求,算法一直在不斷地被創(chuàng)造和完善。

半監(jiān)督學(xué)習(xí)確實是機器學(xué)習(xí)的未來。

原文標(biāo)題:比監(jiān)督學(xué)習(xí)做的更好:半監(jiān)督學(xué)習(xí)

文章出處:【微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:比監(jiān)督學(xué)習(xí)做的更好:半監(jiān)督學(xué)習(xí)

文章出處:【微信號:zenRRan,微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    機器學(xué)習(xí)和深度學(xué)習(xí)中需避免的 7 個常見錯誤與局限性

    無論你是剛?cè)腴T還是已經(jīng)從事人工智能模型相關(guān)工作一段時間,機器學(xué)習(xí)和深度學(xué)習(xí)中都存在一些我們需要時刻關(guān)注并銘記的常見錯誤。如果對這些錯誤置之不理,日后可能會引發(fā)諸多麻煩!只要我們密切關(guān)注數(shù)據(jù)、模型架構(gòu)
    的頭像 發(fā)表于 01-07 15:37 ?108次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>中需避免的 7 個常見錯誤與局限性

    【團(tuán)購】獨家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實戰(zhàn)課(11大系列課程,共5000+分鐘)

    趨勢: 無監(jiān)督學(xué)習(xí)普及 當(dāng)前工業(yè)場景中80%的缺陷檢測項目面臨\"OK樣本充足而NG樣本稀缺\"的困境,傳統(tǒng)監(jiān)督學(xué)習(xí)方案難以落地。課程第11系列(無監(jiān)督缺陷檢測篇)提供無需標(biāo)注即可
    發(fā)表于 12-04 09:28

    【團(tuán)購】獨家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實戰(zhàn)課程(11大系列課程,共5000+分鐘)

    趨勢: 無監(jiān)督學(xué)習(xí)普及 當(dāng)前工業(yè)場景中80%的缺陷檢測項目面臨\"OK樣本充足而NG樣本稀缺\"的困境,傳統(tǒng)監(jiān)督學(xué)習(xí)方案難以落地。課程第11系列(無監(jiān)督缺陷檢測篇)提供無需標(biāo)注即可
    發(fā)表于 12-03 13:50

    自動駕駛中常提的“強化學(xué)習(xí)”是個啥?

    下,就是一個智能體在環(huán)境里行動,它能觀察到環(huán)境的一些信息,并做出一個動作,然后環(huán)境會給出一個反饋(獎勵或懲罰),智能體的目標(biāo)是把長期得到的獎勵累積到最大。和監(jiān)督學(xué)習(xí)不同,強化學(xué)習(xí)沒有一一對應(yīng)的“正確答案”給它看,而是靠與環(huán)境交互、自我探索來發(fā)現(xiàn)
    的頭像 發(fā)表于 10-23 09:00 ?534次閱讀
    自動駕駛中常提的“強化<b class='flag-5'>學(xué)習(xí)</b>”是個啥?

    如何在機器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實的編程技能才能真正掌握并合理使用這項技術(shù)。事實上,這種印象忽視了該技術(shù)為機器視覺(乃至生產(chǎn)自動化)帶來的潛力,因為深度學(xué)習(xí)并非只屬于計算機科學(xué)家或程序員。 從頭開始:什么
    的頭像 發(fā)表于 09-10 17:38 ?804次閱讀
    如何在<b class='flag-5'>機器</b>視覺中部署深度<b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    FPGA在機器學(xué)習(xí)中的具體應(yīng)用

    隨著機器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場可編程門陣列)作為一種靈活且高效的硬件加速平臺
    的頭像 發(fā)表于 07-16 15:34 ?2768次閱讀

    任正非說 AI已經(jīng)確定是第四次工業(yè)革命 那么如何從容地加入進(jìn)來呢?

    的基本理論。了解監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)的基本原理。例如,在監(jiān)督學(xué)習(xí)中,理解如何通過標(biāo)注數(shù)據(jù)來訓(xùn)練模型進(jìn)行分類或回歸任務(wù),像通過大量的貓和狗的圖片標(biāo)注數(shù)據(jù)來訓(xùn)練一個圖像分類模型,
    發(fā)表于 07-08 17:44

    機器學(xué)習(xí)異常檢測實戰(zhàn):用Isolation Forest快速構(gòu)建無標(biāo)簽異常檢測系統(tǒng)

    本文轉(zhuǎn)自:DeepHubIMBA無監(jiān)督異常檢測作為機器學(xué)習(xí)領(lǐng)域的重要分支,專門用于在缺乏標(biāo)記數(shù)據(jù)的環(huán)境中識別異常事件。本文深入探討異常檢測技術(shù)的理論基礎(chǔ)與實踐應(yīng)用,通過IsolationForest
    的頭像 發(fā)表于 06-24 11:40 ?1303次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>異常檢測實戰(zhàn):用Isolation Forest快速構(gòu)建無標(biāo)簽異常檢測系統(tǒng)

    智聚邊緣 創(chuàng)見未來 貿(mào)澤電子2025技術(shù)創(chuàng)新論壇探討“邊緣AI與機器學(xué)習(xí)”新紀(jì)元

    AI浪潮下企業(yè)數(shù)字化轉(zhuǎn)型的創(chuàng)新路徑和可持續(xù)發(fā)展戰(zhàn)略,攜手創(chuàng)造智能化未來。 貿(mào)澤電子亞太區(qū)市場及商務(wù)拓展副總裁田吉平表示:“邊緣AI與機器學(xué)習(xí)不斷
    的頭像 發(fā)表于 05-22 10:38 ?722次閱讀

    使用MATLAB進(jìn)行無監(jiān)督學(xué)習(xí)

    監(jiān)督學(xué)習(xí)是一種根據(jù)未標(biāo)注數(shù)據(jù)進(jìn)行推斷的機器學(xué)習(xí)方法。無監(jiān)督學(xué)習(xí)旨在識別數(shù)據(jù)中隱藏的模式和關(guān)系,無需任何監(jiān)督或關(guān)于結(jié)果的先驗知識。
    的頭像 發(fā)表于 05-16 14:48 ?1322次閱讀
    使用MATLAB進(jìn)行無<b class='flag-5'>監(jiān)督學(xué)習(xí)</b>

    請問STM32部署機器學(xué)習(xí)算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學(xué)習(xí)算法硬件至少要使用哪個系列的芯片?
    發(fā)表于 03-13 07:34

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機器人日常

    在人工智能和機器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的深度學(xué)習(xí)
    的頭像 發(fā)表于 02-19 15:49 ?817次閱讀

    機器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學(xué)習(xí)模型市場的未來
    的頭像 發(fā)表于 02-13 09:39 ?689次閱讀

    人工智能和機器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    與人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能和機器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù) 人工智能(AI)和機器學(xué)習(xí)(ML)是現(xiàn)代科技的
    的頭像 發(fā)表于 01-25 17:37 ?1797次閱讀
    人工智能和<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的概念與應(yīng)用

    嵌入式機器學(xué)習(xí)的應(yīng)用特性與軟件開發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機器學(xué)習(xí)模型部署在資源受限的設(shè)備(如微
    的頭像 發(fā)表于 01-25 17:05 ?1405次閱讀
    嵌入式<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開發(fā)環(huán)境