chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

四個(gè)計(jì)算機(jī)視覺領(lǐng)域用作遷移學(xué)習(xí)的模型

電子設(shè)計(jì) ? 來源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2020-12-15 00:07 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

首發(fā):AI公園
作者:OrhanG. Yal??n
編譯:ronghuaiyang

導(dǎo)讀

使用SOTA的預(yù)訓(xùn)練模型來通過遷移學(xué)習(xí)解決現(xiàn)實(shí)的計(jì)算機(jī)視覺問題。

如果你試過構(gòu)建高精度機(jī)器學(xué)習(xí)模型,但還沒有試過遷移學(xué)習(xí),這篇文章將改變你的生活。至少,對(duì)我來說是的。

我們大多數(shù)人已經(jīng)嘗試過,通過幾個(gè)機(jī)器學(xué)習(xí)教程來掌握神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)。這些教程非常有助于了解人工神經(jīng)網(wǎng)絡(luò)的基本知識(shí),如循環(huán)神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),GANs和自編碼器。但是這些教程的主要功能是為你在現(xiàn)實(shí)場(chǎng)景中實(shí)現(xiàn)做準(zhǔn)備。

現(xiàn)在,如果你計(jì)劃建立一個(gè)利用深度學(xué)習(xí)人工智能系統(tǒng),你要么(i)有一個(gè)非常大的預(yù)算用于培訓(xùn)優(yōu)秀的人工智能研究人員,或者(ii)可以從遷移學(xué)習(xí)中受益。

什么是遷移學(xué)習(xí)?

遷移學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能的一個(gè)分支,其目的是將從一個(gè)任務(wù)(源任務(wù))中獲得的知識(shí)應(yīng)用到一個(gè)不同但相似的任務(wù)(目標(biāo)任務(wù))中。

例如,在學(xué)習(xí)對(duì)維基百科文本進(jìn)行分類時(shí)獲得的知識(shí)可以用于解決法律文本分類問題。另一個(gè)例子是利用在學(xué)習(xí)對(duì)汽車進(jìn)行分類時(shí)獲得的知識(shí)來識(shí)別天空中的鳥類。這些樣本之間存在關(guān)聯(lián)。我們沒有在鳥類檢測(cè)上使用文本分類模型。

遷移學(xué)習(xí)是指從相關(guān)的已經(jīng)學(xué)習(xí)過的任務(wù)中遷移知識(shí),從而對(duì)新的任務(wù)中的學(xué)習(xí)進(jìn)行改進(jìn)

總而言之,遷移學(xué)習(xí)是一個(gè)讓你不必重復(fù)發(fā)明輪子的領(lǐng)域,并幫助你在很短的時(shí)間內(nèi)構(gòu)建AI應(yīng)用。

遷移學(xué)習(xí)的歷史

==========

為了展示遷移學(xué)習(xí)的力量,我們可以引用Andrew Ng的話:

遷移學(xué)習(xí)將是繼監(jiān)督學(xué)習(xí)之后機(jī)器學(xué)習(xí)商業(yè)成功的下一個(gè)驅(qū)動(dòng)因素

遷移學(xué)習(xí)的歷史可以追溯到1993年。Lorien Pratt的論文“Discriminability-Based Transfer between Neural Networks”打開了潘多拉的盒子,向世界介紹了遷移學(xué)習(xí)的潛力。1997年7月,“Machine Learning”雜志發(fā)表了一篇遷移學(xué)習(xí)論文專刊。隨著該領(lǐng)域的深入,諸如多任務(wù)學(xué)習(xí)等相鄰主題也被納入遷移學(xué)習(xí)領(lǐng)域。“Learning to Learn”是這一領(lǐng)域的先驅(qū)書籍之一。如今,遷移學(xué)習(xí)是科技企業(yè)家構(gòu)建新的人工智能解決方案、研究人員推動(dòng)機(jī)器學(xué)習(xí)前沿的強(qiáng)大源泉。

遷移學(xué)習(xí)是如何工作的?

==============

實(shí)現(xiàn)遷移學(xué)習(xí)有三個(gè)要求:

由第三方開發(fā)開源預(yù)訓(xùn)練模型

重用模型

對(duì)問題進(jìn)行微調(diào)

開發(fā)開源預(yù)訓(xùn)練模型

預(yù)訓(xùn)練的模型是由其他人創(chuàng)建和訓(xùn)練來解決與我們類似的問題的模型。在實(shí)踐中,幾乎總是有人是科技巨頭或一群明星研究人員。他們通常選擇一個(gè)非常大的數(shù)據(jù)集作為他們的基礎(chǔ)數(shù)據(jù)集,比如ImageNet或Wikipedia Corpus。然后,他們創(chuàng)建一個(gè)大型神經(jīng)網(wǎng)絡(luò)(例如,VGG19有143,667,240個(gè)參數(shù))來解決一個(gè)特定的問題(例如,這個(gè)問題用VGG19做圖像分類。)當(dāng)然,這個(gè)預(yù)先訓(xùn)練過的模型必須公開,這樣我們就可以利用這些模型并重新使用它們。

重用模型

在我們掌握了這些預(yù)先訓(xùn)練好的模型之后,我們重新定位學(xué)習(xí)到的知識(shí),包括層、特征、權(quán)重和偏差。有幾種方法可以將預(yù)先訓(xùn)練好的模型加載到我們的環(huán)境中。最后,它只是一個(gè)包含相關(guān)信息的文件/文件夾。然而,深度學(xué)習(xí)庫已經(jīng)托管了許多這些預(yù)先訓(xùn)練過的模型,這使得它們更容易訪問:

TensorFlow Hub

Keras Applications

PyTorch Hub

你可以使用上面的一個(gè)源來加載經(jīng)過訓(xùn)練的模型。它通常會(huì)有所有的層和權(quán)重,你可以根據(jù)你的意愿調(diào)整網(wǎng)絡(luò)。

對(duì)問題進(jìn)行微調(diào)

現(xiàn)在的模型也許能解決我們的問題。對(duì)預(yù)先訓(xùn)練好的模型進(jìn)行微調(diào)通常更好,原因有兩個(gè):

這樣我們可以達(dá)到更高的精度。

我們的微調(diào)模型可以產(chǎn)生正確的格式的輸出。

一般來說,在神經(jīng)網(wǎng)絡(luò)中,底層和中層通常代表一般的特征,而頂層則代表特定問題的特征。由于我們的新問題與原來的問題不同,我們傾向于刪除頂層。通過為我們的問題添加特定的層,我們可以達(dá)到更高的精度。

在刪除頂層之后,我們需要放置自己的層,這樣我們就可以得到我們想要的輸出。例如,使用ImageNet訓(xùn)練的模型可以分類多達(dá)1000個(gè)對(duì)象。如果我們?cè)噲D對(duì)手寫數(shù)字進(jìn)行分類(例如,MNIST classification),那么最后得到一個(gè)只有10個(gè)神經(jīng)元的層可能會(huì)更好。

在我們將自定義層添加到預(yù)先訓(xùn)練好的模型之后,我們可以用特殊的損失函數(shù)和優(yōu)化器來配置它,并通過額外的訓(xùn)練進(jìn)行微調(diào)。

計(jì)算機(jī)視覺中的4個(gè)預(yù)訓(xùn)練模型

這里有四個(gè)預(yù)先訓(xùn)練好的網(wǎng)絡(luò),可以用于計(jì)算機(jī)視覺任務(wù),如圖像生成、神經(jīng)風(fēng)格轉(zhuǎn)換、圖像分類、圖像描述、異常檢測(cè)等:

VGG19

Inceptionv3 (GoogLeNet)

ResNet50

EfficientNet

讓我們一個(gè)一個(gè)地深入研究。

VGG-19

VGG是一種卷積神經(jīng)網(wǎng)絡(luò),深度為19層。它是由牛津大學(xué)的Karen Simonyan和Andrew Zisserman在2014年構(gòu)建和訓(xùn)練的,論文為:Very Deep Convolutional Networks for large Image Recognition。VGG-19網(wǎng)絡(luò)還使用ImageNet數(shù)據(jù)庫中的100多萬張圖像進(jìn)行訓(xùn)練。當(dāng)然,你可以使用ImageNet訓(xùn)練過的權(quán)重導(dǎo)入模型。這個(gè)預(yù)先訓(xùn)練過的網(wǎng)絡(luò)可以分類多達(dá)1000個(gè)物體。對(duì)224x224像素的彩色圖像進(jìn)行網(wǎng)絡(luò)訓(xùn)練。以下是關(guān)于其大小和性能的簡要信息:

大?。?49 MB

Top-1 準(zhǔn)確率:71.3%

Top-5 準(zhǔn)確率:90.0%

參數(shù)個(gè)數(shù):143,667,240

深度:26

Inceptionv3 (GoogLeNet)

Inceptionv3是一個(gè)深度為50層的卷積神經(jīng)網(wǎng)絡(luò)。它是由谷歌構(gòu)建和訓(xùn)練的,你可以查看這篇論文:“Going deep with convolutions”。預(yù)訓(xùn)練好的帶有ImageNet權(quán)重的Inceptionv3可以分類多達(dá)1000個(gè)對(duì)象。該網(wǎng)絡(luò)的圖像輸入大小為299x299像素,大于VGG19網(wǎng)絡(luò)。VGG19是2014年ImageNet競(jìng)賽的亞軍,而Inception是冠軍。以下是對(duì)Inceptionv3特性的簡要總結(jié):

尺寸:92 MB

Top-1 準(zhǔn)確率:77.9%

Top-5 準(zhǔn)確率:93.7%

參數(shù)數(shù)量:23,851,784

深度:159

ResNet50 (Residual Network)

ResNet50是一個(gè)卷積神經(jīng)網(wǎng)絡(luò),深度為50層。它是由微軟于2015年建立和訓(xùn)練的,論文:[Deep Residual Learning for Image Recognition](http://deep Residual Learning for Image Recognition /)。該模型對(duì)ImageNet數(shù)據(jù)庫中的100多萬張圖像進(jìn)行了訓(xùn)練。與VGG-19一樣,它可以分類多達(dá)1000個(gè)對(duì)象,網(wǎng)絡(luò)訓(xùn)練的是224x224像素的彩色圖像。以下是關(guān)于其大小和性能的簡要信息:

尺寸:98 MB

Top-1 準(zhǔn)確率:74.9%

Top-5 準(zhǔn)確率:92.1%

參數(shù)數(shù)量:25,636,712

如果你比較ResNet50和VGG19,你會(huì)發(fā)現(xiàn)ResNet50實(shí)際上比VGG19性能更好,盡管它的復(fù)雜性更低。你也可以使用更新的版本,如ResNet101,ResNet152,ResNet50V2,ResNet101V2,ResNet152V2。

EfficientNet

EfficientNet是一種最先進(jìn)的卷積神經(jīng)網(wǎng)絡(luò),由谷歌在2019年的論文“efficient entnet: Rethinking Model Scaling for convolutional neural Networks”中訓(xùn)練并發(fā)布。EfficientNet有8種可選實(shí)現(xiàn)(B0到B7),甚至最簡單的EfficientNet B0也是非常出色的。通過530萬個(gè)參數(shù),實(shí)現(xiàn)了77.1%的最高精度性能。

EfficientNetB0的特性簡要介紹如下:

尺寸:29 MB

Top-1 準(zhǔn)確率:77.1%

Top-5 準(zhǔn)確率:93.3%

參數(shù)數(shù)量:~5,300,000

深度:159

其他的計(jì)算機(jī)視覺問題的預(yù)訓(xùn)練模型

我們列出了四種最先進(jìn)的獲獎(jiǎng)卷積神經(jīng)網(wǎng)絡(luò)模型。然而,還有幾十種其他模型可供遷移學(xué)習(xí)使用。下面是對(duì)這些模型的基準(zhǔn)分析,這些模型都可以在Keras Applications中獲得。

總結(jié)

=====

在一個(gè)我們可以很容易地獲得最先進(jìn)的神經(jīng)網(wǎng)絡(luò)模型的世界里,試圖用有限的資源建立你自己的模型就像是在重復(fù)發(fā)明輪子,是毫無意義的。

相反,嘗試使用這些訓(xùn)練模型,在上面添加一些新的層,考慮你的特殊計(jì)算機(jī)視覺任務(wù),然后訓(xùn)練。其結(jié)果將比你從頭構(gòu)建的模型更成功。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1814

    文章

    49955

    瀏覽量

    263608
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3687

    瀏覽量

    51943
  • 計(jì)算機(jī)視覺
    +關(guān)注

    關(guān)注

    9

    文章

    1715

    瀏覽量

    47539
  • 遷移學(xué)習(xí)
    +關(guān)注

    關(guān)注

    0

    文章

    74

    瀏覽量

    5844
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    上海計(jì)算機(jī)視覺企業(yè)行學(xué)術(shù)沙龍走進(jìn)西井科技

    12月5日,由中國圖象圖形學(xué)學(xué)會(huì)青年工作委員會(huì)(下簡稱“青工委”)、上海市計(jì)算機(jī)學(xué)會(huì)計(jì)算機(jī)視覺專委會(huì)(下簡稱“專委會(huì)”)聯(lián)合主辦,上海西井科技股份有限公司、江蘇路街道商會(huì)承辦的“上海計(jì)算機(jī)
    的頭像 發(fā)表于 12-16 15:39 ?456次閱讀

    使用代理式AI激活傳統(tǒng)計(jì)算機(jī)視覺系統(tǒng)的三種方法

    當(dāng)前的計(jì)算機(jī)視覺系統(tǒng)擅長于識(shí)別物理空間與流程中的事件,卻難以詮釋場(chǎng)景細(xì)節(jié)及其意義,也無法推理后續(xù)可能發(fā)生的情況。
    的頭像 發(fā)表于 12-01 09:44 ?560次閱讀

    工控機(jī)與普通計(jì)算機(jī)的核心差異解析

    在工業(yè)自動(dòng)化和智能制造領(lǐng)域計(jì)算機(jī)設(shè)備作為核心控制單元,其選擇直接影響整個(gè)系統(tǒng)的穩(wěn)定性與可靠性。工控機(jī)與普通計(jì)算機(jī)雖同屬計(jì)算設(shè)備,但其設(shè)計(jì)目標(biāo)、性能側(cè)重和應(yīng)用場(chǎng)景存在根本性差異。準(zhǔn)確理
    的頭像 發(fā)表于 11-25 14:45 ?1630次閱讀
    工控機(jī)與普通<b class='flag-5'>計(jì)算機(jī)</b>的核心差異解析

    【作品合集】賽昉科技VisionFive 2單板計(jì)算機(jī)開發(fā)板測(cè)評(píng)

    VisionFive 2 上為目標(biāo)檢測(cè)準(zhǔn)備軟件環(huán)境并運(yùn)行 MobileNet-SSD 模型【VisionFive 2單板計(jì)算機(jī)試用體驗(yàn)】VisionFive 2復(fù)古游戲機(jī)改造 作者:TLLED【VisionFive 2
    發(fā)表于 09-04 09:08

    維圖新榮獲陜西省計(jì)算機(jī)學(xué)會(huì)“科技進(jìn)步一等獎(jiǎng)”

    近日,陜西省計(jì)算機(jī)學(xué)會(huì)公布了2025年度計(jì)算機(jī)領(lǐng)域科學(xué)技術(shù)獎(jiǎng)獲獎(jiǎng)名單。其中,由西安電子科技大學(xué)牽頭,聯(lián)合維圖新等單位共同申報(bào)的“面向安全駕駛的車路云協(xié)同環(huán)境感知技術(shù)及應(yīng)用”項(xiàng)目榮獲“
    的頭像 發(fā)表于 08-29 16:53 ?1334次閱讀

    易控智駕榮獲計(jì)算機(jī)視覺頂會(huì)CVPR 2025認(rèn)可

    近日,2025年國際計(jì)算機(jī)視覺與模式識(shí)別頂級(jí)會(huì)議(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美國田納西州納什維爾召開。
    的頭像 發(fā)表于 07-29 16:54 ?1108次閱讀

    自動(dòng)化計(jì)算機(jī)經(jīng)過加固后有什么好處?

    讓我們討論一下部署堅(jiān)固的自動(dòng)化計(jì)算機(jī)的一些好處。1.溫度范圍寬自動(dòng)化計(jì)算機(jī)經(jīng)過工程設(shè)計(jì),配備了支持寬溫度范圍的組件,使自動(dòng)化計(jì)算解決方案能夠在各種不同的極端環(huán)境中運(yùn)行。自動(dòng)化計(jì)算機(jī)能夠
    的頭像 發(fā)表于 07-21 16:44 ?534次閱讀
    自動(dòng)化<b class='flag-5'>計(jì)算機(jī)</b>經(jīng)過加固后有什么好處?

    自動(dòng)化計(jì)算機(jī)的功能與用途

    工業(yè)自動(dòng)化是指利用自動(dòng)化計(jì)算機(jī)來控制工業(yè)環(huán)境中的流程、機(jī)器人和機(jī)械,以制造產(chǎn)品或其部件。工業(yè)自動(dòng)化的目的是提高生產(chǎn)率、增加靈活性,并提升制造過程的質(zhì)量。工業(yè)自動(dòng)化在汽車制造中體現(xiàn)得最為明顯,其中許多
    的頭像 發(fā)表于 07-15 16:32 ?639次閱讀
    自動(dòng)化<b class='flag-5'>計(jì)算機(jī)</b>的功能與用途

    工業(yè)計(jì)算機(jī)與商用計(jì)算機(jī)的區(qū)別有哪些

    工業(yè)計(jì)算機(jī)是一種專為工廠和工業(yè)環(huán)境設(shè)計(jì)的計(jì)算系統(tǒng),具有高可靠性和穩(wěn)定性,能夠應(yīng)對(duì)惡劣環(huán)境下的自動(dòng)化、制造和機(jī)器人操作。其特點(diǎn)包括無風(fēng)扇散熱技術(shù)、無電纜連接和防塵防水設(shè)計(jì),使其在各種工業(yè)自動(dòng)化場(chǎng)景中
    的頭像 發(fā)表于 07-10 16:36 ?622次閱讀
    工業(yè)<b class='flag-5'>計(jì)算機(jī)</b>與商用<b class='flag-5'>計(jì)算機(jī)</b>的區(qū)別有哪些

    NVIDIA 宣布推出 DGX Spark 個(gè)人 AI 計(jì)算機(jī)

    的 DGX? 個(gè)人 AI 超級(jí)計(jì)算機(jī)。 ? DGX Spark(前身為 Project DIGITS)支持 AI 開發(fā)者、研究人員、數(shù)據(jù)科學(xué)家和學(xué)生,在臺(tái)式電腦上對(duì)大模型進(jìn)行原型設(shè)計(jì)、微調(diào)和推理。用
    發(fā)表于 03-19 09:59 ?557次閱讀
       NVIDIA 宣布推出 DGX Spark 個(gè)人 AI <b class='flag-5'>計(jì)算機(jī)</b>

    英飛凌邊緣AI平臺(tái)通過Ultralytics YOLO模型增加對(duì)計(jì)算機(jī)視覺的支持

    對(duì)計(jì)算機(jī)視覺的支持,擴(kuò)大了當(dāng)前對(duì)音頻、雷達(dá)和其他時(shí)間序列信號(hào)數(shù)據(jù)的支持范圍。在增加這項(xiàng)支持后,該平臺(tái)將能夠用于開發(fā)低功耗、低內(nèi)存的邊緣AI視覺模型。這將給諸多應(yīng)用
    的頭像 發(fā)表于 03-11 15:11 ?727次閱讀
    英飛凌邊緣AI平臺(tái)通過Ultralytics YOLO<b class='flag-5'>模型</b>增加對(duì)<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺</b>的支持

    Arm KleidiCV與OpenCV集成助力移動(dòng)端計(jì)算機(jī)視覺性能優(yōu)化

    生成式及多模態(tài)人工智能 (AI) 工作負(fù)載的廣泛增長,推動(dòng)了對(duì)計(jì)算機(jī)視覺 (CV) 技術(shù)日益高漲的需求。此類技術(shù)能夠解釋并分析源自現(xiàn)實(shí)世界的視覺信息,并可應(yīng)用于人臉識(shí)別、照片分類、濾鏡處理及增強(qiáng)現(xiàn)實(shí)
    的頭像 發(fā)表于 02-24 10:15 ?992次閱讀

    中科馭數(shù)DPU助力大模型訓(xùn)練和推理

    隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,大模型(如GPT、BERT等)在自然語言處理、計(jì)算機(jī)視覺領(lǐng)域取得了顯著成果。然而,大
    的頭像 發(fā)表于 02-19 09:48 ?1194次閱讀
    中科馭數(shù)DPU助力大<b class='flag-5'>模型</b>訓(xùn)練和推理

    AR和VR中的計(jì)算機(jī)視覺

    ):計(jì)算機(jī)視覺引領(lǐng)混合現(xiàn)實(shí)體驗(yàn)增強(qiáng)現(xiàn)實(shí)(AR)和虛擬現(xiàn)實(shí)(VR)正在徹底改變我們與外部世界的互動(dòng)方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?2310次閱讀
    AR和VR中的<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺</b>

    模數(shù)轉(zhuǎn)換電路的四個(gè)過程

    模數(shù)轉(zhuǎn)換(Analog-to-Digital Conversion,簡稱ADC)是將模擬信號(hào)轉(zhuǎn)換為數(shù)字信號(hào)的關(guān)鍵過程,廣泛應(yīng)用于通信、數(shù)據(jù)采集、信號(hào)處理等領(lǐng)域。模數(shù)轉(zhuǎn)換電路的設(shè)計(jì)與實(shí)現(xiàn)涉及多個(gè)關(guān)鍵步驟,通??梢苑譃?b class='flag-5'>四個(gè)主要過程:采樣、保持、量化和編碼。本文將詳細(xì)分析這
    的頭像 發(fā)表于 02-03 16:12 ?2726次閱讀