chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

開關(guān)電源中全部緩沖吸收電路的解析

電子設(shè)計 ? 來源:電子設(shè)計 ? 作者:電子設(shè)計 ? 2020-12-26 06:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

吸收與緩沖的功效:

防止器件損壞,吸收防止電壓擊穿,緩沖防止電流擊穿

使功率器件遠(yuǎn)離危險工作區(qū),從而提高可靠性

降低(開關(guān))器件損耗,或者實現(xiàn)某種程度的關(guān)軟開

降低di/dt和dv/dt,降低振鈴,改善EMI品質(zhì)

提高效率(提高效率是可能的,但弄不好也可能降低效率)

也就是說,防止器件損壞只是吸收與緩沖的功效之一,其他功效也是很有價值的。

吸收

吸收是對電壓尖峰而言。

電壓尖峰的成因:

電壓尖峰是電感續(xù)流引起的。

引起電壓尖峰的電感可能是:變壓器漏感、線路分布電感、器件等效模型中的感性成分等。

引起電壓尖峰的電流可能是:拓?fù)潆娏鳌?a target="_blank">二極管反向恢復(fù)電流、不恰當(dāng)?shù)闹C振電流等。

減少電壓尖峰的主要措施是:

減少可能引起電壓尖峰的電感,比如漏感、布線電感等

減少可能引起電壓尖峰的電流,比如二極管反向恢復(fù)電流等

如果可能的話,將上述電感能量轉(zhuǎn)移到別處。

采取上述措施后電壓尖峰仍然不能接受,最后才考慮吸收。吸收是不得已的技術(shù)措施

拓?fù)湮?/p>

將開關(guān)管Q1、拓?fù)淅m(xù)流二極管D1和一個無損的拓?fù)?a href="http://www.brongaenegriffin.com/tags/電容/" target="_blank">電容C2組成一個在布線上盡可能簡短的吸收回路。

拓?fù)湮盏奶攸c:

同時將Q1、D1的電壓尖峰、振鈴減少到最低程度。

拓?fù)湮帐菬o損吸收,效率較高。

吸收電容C2可以在大范圍內(nèi)取值。

拓?fù)湮帐怯查_關(guān),因為拓?fù)涫怯查_關(guān)。

體二極管反向恢復(fù)吸收

開關(guān)器件的體二極管的反向恢復(fù)特性,在關(guān)斷電壓的上升沿發(fā)揮作用,有降低電壓尖峰的吸收效應(yīng)。

RC 吸收

RC吸收的本質(zhì)是阻尼吸收。

有人認(rèn)為R 是限流作用,C是吸收。實際情況剛好相反。

電阻R 的最重要作用是產(chǎn)生阻尼,吸收電壓尖峰的諧振能量,是功率器件。

電容C的作用也并不是電壓吸收,而是為R阻尼提供能量通道。

RC吸收并聯(lián)于諧振回路上,C提供諧振能量通道,C 的大小決定吸收程度,最終目的是使R形成功率吸收。

對應(yīng)一個特定的吸收環(huán)境和一個特定大小的電容C,有一個最合適大小的電阻R,形成最大的阻尼、獲得最低的電壓尖峰。

RC吸收是無方向吸收,因此RC吸收既可以用于單向電路的吸收,也可用于雙向或者對稱電路的吸收。

RC 吸收設(shè)計

RC吸收的設(shè)計方法的難點在于:吸收與太多因素有關(guān),比如漏感、繞組結(jié)構(gòu)、分布電感電容、器件等效電感電容、電流、電壓、功率等級、di/dt、dv/dt、頻率、二極管反向恢復(fù)特性等等。而且其中某些因素是很難獲得準(zhǔn)確的設(shè)計參數(shù)的。

比如對二極管反壓的吸收,即使其他情況完全相同,使用不同的二極管型號需要的RC吸收參數(shù)就可能有很大差距。很難推導(dǎo)出一個通用的計算公式出來。

R 的損耗功率可大致按下式估算:

Ps = FCU2

其中U為吸收回路拓?fù)浞瓷潆妷骸?/p>

工程上一般應(yīng)該在通過計算或者仿真獲得初步參數(shù)后,還必須根據(jù)實際布線在板調(diào)試,才能獲得最終設(shè)計參數(shù)。

RCD 吸收

特點

RCD吸收不是阻尼吸收,而是靠非線性開關(guān)D 直接破壞形成電壓尖峰的諧振條件,把電壓尖峰控制在任何需要的水平。

C 的大小決定吸收效果(電壓尖峰),同時決定了吸收功率(即R的熱功率)。

R 的作用只是把吸收能量以熱的形式消耗掉。其電阻的最小值應(yīng)該滿足開關(guān)管的電流限制,最大值應(yīng)該滿足PWM逆程RC放電周期需要,在此范圍內(nèi)取值對吸收效果影響甚微。

RCD吸收會在被保護(hù)的開關(guān)器件上實現(xiàn)某種程度的軟關(guān)斷,這是因為關(guān)斷瞬間開關(guān)器件上的電壓即吸收電容C上的電壓等于0,關(guān)斷動作會在C 上形成一個充電過程,延緩電壓恢復(fù),降低dv/dt,實現(xiàn)軟關(guān)斷。

不適應(yīng)性

RCD吸收一般不適合反激拓?fù)涞奈?,這是因為RCD吸收可能與反激拓?fù)湎鄾_突。

RCD吸收一般不適合對二極管反壓尖峰的吸收,因為RCD吸收動作有可能加劇二極管反向恢復(fù)電流。

鉗位吸收

RCD 鉗位

盡管RCD鉗位與RCD吸收電路可以完全相同,但元件參數(shù)和工況完全不同。RCD吸收RC時間常數(shù)遠(yuǎn)小于PWM周期,而RCD鉗位的RC時間常數(shù)遠(yuǎn)大于PWM周期。

與RCD吸收電容的全充全放工況不同,RCD鉗位的電容可以看成是電壓源,其RC充放電幅度的谷值應(yīng)不小于拓?fù)浞瓷潆妷?,峰值即鉗位電壓。

由于RCD鉗位在PWM電壓的上升沿和下降沿都不會動作,只在電壓尖峰出現(xiàn)時動作,因此RCD鉗位是高效率的吸收。

齊納鉗位

齊納鉗位的幾種形式。

齊納鉗位也是在電壓尖峰才起作用,也是高效率吸收。

某些場合,齊納鉗位需要考慮齊納二極管的反向恢復(fù)特性對電路的影響。

齊納吸收需注意吸收功率匹配,必要時可用有源功率器件組成大功率等效電路

無損吸收

無損吸收的條件

吸收網(wǎng)絡(luò)不得使用電阻。

不得形成LD電流回路。

吸收回路不得成為拓?fù)潆娏髀窂健?/p>

吸收能量必須轉(zhuǎn)移到輸入側(cè)或者輸出側(cè)。

盡量減少吸收回路二極管反向恢復(fù)電流的影響。

無損吸收是強(qiáng)力吸收,不僅能夠吸收電壓尖峰,甚至能夠吸收拓?fù)浞瓷潆妷?,比如?/p>

緩沖

緩沖是對沖擊尖峰電流而言

引起電流尖峰第一種情況是二極管(包括體二極管)反向恢復(fù)電流。

引起電流尖峰第二種情況是對電容的充放電電流。這些電容可能是:電路分布電容、變壓器繞組等效分布電容、設(shè)計不恰當(dāng)?shù)奈针娙?、設(shè)計不恰當(dāng)?shù)闹C振電容、器件的等效模型中的電容成分等等。

緩沖的基本方法:

在沖擊電流尖峰的路徑上串入某種類型的電感,可以是以下類型:

緩沖的特性:

由于緩沖電感的串入會顯著增加吸收的工作量,因此緩沖電路一般需要與吸收電路配合使用。

緩沖電路延緩了導(dǎo)通電流沖擊,可實現(xiàn)某種程度的軟開通(ZIS)。

變壓器漏感也可以充當(dāng)緩沖電感。

LD 緩沖

特點:

可不需要吸收電路配合。

緩沖釋能二極管與拓?fù)淅m(xù)流二極管電流應(yīng)力相當(dāng)甚至更大。

緩沖釋能二極管的損耗可以簡單理解為開關(guān)管減少的損耗。

適當(dāng)?shù)木彌_電感(L3)參數(shù)可以大幅度減少開關(guān)管損耗,實現(xiàn)高效率。

LR 緩沖

特點:

需要吸收電路配合以轉(zhuǎn)移電感剩余能量。

緩沖釋能電阻R的損耗較大,可簡單理解為是從開關(guān)管轉(zhuǎn)移出來的損耗。

R、L參數(shù)必須實現(xiàn)最佳配合,參數(shù)設(shè)計調(diào)試比較難以掌握。

只要參數(shù)適當(dāng)仍然能夠?qū)崿F(xiàn)高效率。

飽和電感緩沖

飽和電感的電氣性能表現(xiàn)為對di/dt敏感。

在一個沖擊電流的上升沿,開始呈現(xiàn)較大的阻抗,隨著電流的升高逐漸進(jìn)入飽和,從而延緩和削弱了沖擊電流尖峰,即實現(xiàn)軟開通。

在電流達(dá)到一定程度后,飽和電感因為飽和而呈現(xiàn)很低的阻抗,這有利于高效率地傳輸功率。

在電流關(guān)斷時,電感逐漸退出飽和狀態(tài),一方面,由于之前的飽和狀態(tài)的飽和電感量非常小,即儲能和需要的釋能較小。另一方面,退出時電感量的恢復(fù)可以減緩電壓的上升速度,有利于實現(xiàn)軟關(guān)斷。

以Ls2為例,5u表示磁路截面積5mm2,大致相當(dāng)于1顆PC40材質(zhì)4*4*2的小磁芯。

飽和電感特性

熱特性

飽和電感是功率器件,通過進(jìn)入和退出飽和過程的磁滯損耗(而不是渦流損耗或者銅損)吸收電流尖峰能量,主要熱功率來自于磁芯。

這一方面要求磁芯應(yīng)該是高頻材料,另一方面要求磁芯溫度在任何情況下不得超過居里溫度。這意味著飽和電感的磁芯應(yīng)該具有最有利的散熱特性和結(jié)構(gòu),即:更高的居里溫度、更高的導(dǎo)熱系數(shù)、更大的散熱面積、更短的熱傳導(dǎo)路徑。

飽和特性

顯然飽和電感一般不必考慮使用氣隙或者不易飽和的低導(dǎo)磁率材料。

初始電感等效特性

在其他條件相同情況下,較低導(dǎo)磁率的磁芯配合較多匝數(shù)、與較高導(dǎo)磁率的磁芯配合較少匝數(shù)的飽和電感初始電感相當(dāng),緩沖效果大致相當(dāng)。

這意味著直接采用1 匝的穿心電感總是可能的,因為任何多匝的電感總可以找到更高導(dǎo)磁率的磁芯配合1 匝等效之。這還意味著磁芯最高導(dǎo)磁率受到限制,如果一個適合的磁芯配合1 匝的飽和電感,將沒有使用更高導(dǎo)磁率的磁芯配合更少匝數(shù)的可能。

磁芯體積等效特性

在其他條件相同情況下,相同體積的磁芯的飽和電感緩沖效果大致相當(dāng)。既然如此,磁芯可以按照最有利于散熱的磁路進(jìn)行設(shè)計。比如細(xì)長的管狀磁芯比環(huán)狀磁芯、多個小磁芯比集中一個大磁芯、穿心電感比多匝電感顯然具有更大的散熱表面積。

組合特性

有時候,單一材質(zhì)的磁芯并不能達(dá)到工程上需要的緩沖效果,采用多種材質(zhì)的磁芯相互配合或許才能能夠滿足工程需要。

無源無損緩沖吸收

如果緩沖電感本身是無損的(非飽和電感),而其電感儲能又是經(jīng)過無損吸收的方式處理的,即構(gòu)成無源無損緩沖吸收電路,實際上這也是無源軟開關(guān)電路

緩沖電感的存在延遲和削弱的開通沖擊電流,實現(xiàn)了一定程度的軟開通。

無損吸收電路的存在延遲和降低了關(guān)斷電壓的dv/dt,實現(xiàn)了一定程度的軟關(guān)斷。

實現(xiàn)無源軟開關(guān)的條件與無損吸收大致相同。并不是所有拓?fù)涠寄軌虼罱ǔ鲆粋€無源軟開關(guān)電路。因此除了經(jīng)典的電路外,很多無源軟開關(guān)電路都是被專利的熱門。

無源無損軟開關(guān)電路效率明顯高于其他緩沖吸收方式,與有源軟開關(guān)電路效率相差無幾。因此只要能夠?qū)崿F(xiàn)無源軟開關(guān)的電路,可不必采用有源軟開關(guān)。

吸收緩沖電路性能對

濾波緩

電路中的電解電容一般具有較大的ESR(典型值是百毫歐姆數(shù)量級),這引起兩方面問題:一是濾波效果大打折扣;二是紋波電流在ESR上產(chǎn)生較大損耗,這不僅降低效率,而且由于電解電容發(fā)熱直接導(dǎo)致的可靠性和壽命問題。

一般方法是在電解電容上并聯(lián)高頻無損電容,而事實上,這一方法并不能使上述問題獲得根本的改變,這是由于高頻無損電容在開關(guān)電源常用頻率范圍內(nèi)仍然存在較大的阻抗的緣故。

提出的辦法是:用電感將電解和CBB分開,CBB位于高頻紋波電流側(cè),電解位于直流(工頻)側(cè),各自承擔(dān)對應(yīng)的濾波任務(wù)。

設(shè)計原則:Π形濾波網(wǎng)絡(luò)的諧振頻率Fn應(yīng)該錯開PWM頻率Fp。可取Fp=(1.5~2)Fn 。

這一設(shè)計思想可以延伸到直流母線濾波的雙向緩沖,或者其他有較大濾波應(yīng)力的電路結(jié)構(gòu)。

振鈴

振鈴的危害:

MEI測試在振鈴頻率容易超標(biāo)。

振鈴將引起振鈴回路的損耗,造成器件發(fā)熱和降低效率。

振鈴電壓幅度超過臨界值將引起振鈴電流,破環(huán)電路正常工況,效率大幅度降低。

振鈴的成因:

振鈴多半是由結(jié)電容和某個等效電感的諧振產(chǎn)生的。對于一個特定頻率的振鈴,總可以找到原因。電容和電感可以確定一個頻率,而頻率可以觀察獲得。電容多半是某個器件的結(jié)電容,電感則可能是漏感。

振鈴最容易在無損(無電阻的)回路發(fā)生。比如:副邊二極管結(jié)電容與副邊漏感的諧振、雜散電感與器件結(jié)電容的諧振、吸收回路電感與器件結(jié)電容的諧振等等。

振鈴的抑制:

磁珠吸收,只要磁珠在振鈴頻率表現(xiàn)為電阻,即可大幅度吸收振鈴能量,但是不恰當(dāng)?shù)拇胖橐部赡茉黾诱疋彙?/p>

RC 吸收,其中C可與振鈴(結(jié))電容大致相當(dāng),R 按RC吸收原則選取。

改變諧振頻率,比如:只要將振鈴頻率降低到PWM頻率相近,即可消除PWM上的振鈴。

特別地,輸入輸出濾波回路設(shè)計不當(dāng)也可能產(chǎn)生諧振,也需要調(diào)整諧振頻率或者其他措施予以規(guī)避。

吸收緩沖能量再利用

RCD吸收能量回收電路

只要將吸收電路的正程和逆程回路分開,形成相對0 電位的正負(fù)電流通道,就能夠獲得正負(fù)電壓輸出。其設(shè)計要點為:

RCD吸收電路參數(shù)應(yīng)主要滿足主電路吸收需要,不建議采用增加吸收功率的方式增加直流輸出功率。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 開關(guān)電源
    +關(guān)注

    關(guān)注

    6553

    文章

    8677

    瀏覽量

    495050
  • 吸收電路
    +關(guān)注

    關(guān)注

    1

    文章

    36

    瀏覽量

    12183
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    反激電源RCD鉗位電路參數(shù)設(shè)計

    RCD鉗位電路(也稱為RCD緩沖電路或RCD吸收電路)在開關(guān)電源(尤其是反激變換器)中廣泛應(yīng)用,
    的頭像 發(fā)表于 11-30 16:54 ?2541次閱讀
    反激<b class='flag-5'>電源</b><b class='flag-5'>中</b>RCD鉗位<b class='flag-5'>電路</b>參數(shù)設(shè)計

    反激式開關(guān)電源理論與原理解析

    就會變大,并且整機(jī)的效率也很低。 如果在開關(guān)模式的開關(guān)電源,不僅可以提高效率,還可以降低熱管理。 什么是開關(guān)穩(wěn)壓器? 開關(guān)穩(wěn)壓器,實現(xiàn)穩(wěn)壓,就需要控制系統(tǒng)(負(fù)反饋),從自動控制理論
    發(fā)表于 06-09 15:33

    史上最全面解析開關(guān)電源各功能電路

    01開關(guān)電源電路組成開關(guān)電源的主要電路是由輸入電磁干擾濾波器(EMI)、整流濾波電路、功率變換電路
    的頭像 發(fā)表于 05-13 19:31 ?1882次閱讀
    史上最全面<b class='flag-5'>解析</b>:<b class='flag-5'>開關(guān)電源</b>各功能<b class='flag-5'>電路</b>

    開關(guān)電源講解 -- 以反激式開關(guān)電源為例

    (電壓低則增大輸出功率,反之則減?。?,最終達(dá)到一個動態(tài)平衡,穩(wěn)定電壓是一個不斷反饋的結(jié)果。 二、瞬變?yōu)V波電路解析市電接入開關(guān)電源之后,首先進(jìn)入瞬變?yōu)V波電路(Transient Fil
    發(fā)表于 04-24 17:22

    SiC MOSFET 開關(guān)模塊RC緩沖吸收電路的參數(shù)優(yōu)化設(shè)計

    尖峰電壓和系統(tǒng) EMC 的抑制為目標(biāo)。實際應(yīng)用,選擇緩沖吸收電路參數(shù)時,為防止 SiC-MOSFET開關(guān)在開通瞬間由于
    發(fā)表于 04-23 11:25

    反激式開關(guān)電源電路的基礎(chǔ)知識

    在硬件面試經(jīng)典的第 86 題中提到的反激式開關(guān)電源,是通過開關(guān)通斷將交流轉(zhuǎn)變成直流的 AD-DC 開關(guān)電源的一種,并且反激式開關(guān)電源是由
    的頭像 發(fā)表于 04-02 09:15 ?3199次閱讀
    反激式<b class='flag-5'>開關(guān)電源</b><b class='flag-5'>電路</b>的基礎(chǔ)知識

    開關(guān)電源設(shè)計指南(完整版)

    這是一本介紹開關(guān)電源理論與工程設(shè)計相結(jié)合的工具書,介紹了電源在系統(tǒng)的作用、電源設(shè)計流程、開關(guān)電源設(shè)計、
    發(fā)表于 03-17 14:18

    開關(guān)電源保護(hù)電路

    摘要:為使開關(guān)電源在惡劣環(huán)境及突發(fā)故障狀況下安全可靠,提出了幾種實用的保護(hù)電路,并對電路的工作原理進(jìn)行了詳盡分析。 關(guān)鍵詞:開關(guān)電源;保護(hù)電路
    發(fā)表于 03-10 17:11

    開關(guān)電源的功率因數(shù)校正電路詳解

    本文今天要講的PFC,是指開關(guān)電源功率因數(shù)校正電路。
    的頭像 發(fā)表于 03-06 10:18 ?1980次閱讀
    <b class='flag-5'>開關(guān)電源</b><b class='flag-5'>中</b>的功率因數(shù)校正<b class='flag-5'>電路</b>詳解

    開關(guān)電源緩沖電路設(shè)計

    過電壓。這不僅意味著設(shè)計人員必須選用昂貴 的高耐壓功率開關(guān)管,同時也給 電源 的可靠性帶來潛在威脅 ,為此 ,需要設(shè)置各種緩沖吸收電路對其
    發(fā)表于 03-05 14:58

    開關(guān)電源的鉗位電路講解(可下載)

    一:如上圖紅框里面的電路是反激電源的鉗位電路,用的 RCD 鉗位,這一個電路開關(guān)電源中非常常見,可以說現(xiàn)在市面上的反激大部分是用的這一
    發(fā)表于 03-05 14:12 ?4次下載

    開關(guān)電源入門必讀:開關(guān)電源工作原理超詳細(xì)解析

    宏觀的角度大致介紹了一下一臺電源內(nèi)部的各個模塊。下面我們細(xì)化一下,將話題轉(zhuǎn)移到電源各 個模塊的元器件上來…… 第4頁:瞬變?yōu)V波電路解析 市電接入 PC
    發(fā)表于 02-26 15:35

    PWM開關(guān)電源電路分析

    正負(fù)12伏電流模式控制PWM開 關(guān)電源的研究目錄第一章緒論 第二章開關(guān)電源基礎(chǔ) 第三章單端反激式開關(guān)電源設(shè)計 第四章模塊及控制電路設(shè)計第五章整體電路
    發(fā)表于 02-26 14:56

    一文看懂開關(guān)電源電路

    一、開關(guān)電源電路組成 開關(guān)電源的主要電路是由輸入電磁干擾濾波器(EMI)、整流濾波電路、功率變換電路
    的頭像 發(fā)表于 02-14 09:40 ?2011次閱讀
    一文看懂<b class='flag-5'>開關(guān)電源</b><b class='flag-5'>電路</b>

    電源干貨!反激開關(guān)電源電路分析!

    ,整流二極管D1處于截止?fàn)顟B(tài),再初級繞組存儲能量。當(dāng)開關(guān)管截止時,變壓器T初級繞組存儲的能量,通過次級繞組激VD1整流和電容C濾波后向負(fù)載輸出。 單端反激式開關(guān)電源是一種成本最低
    發(fā)表于 12-10 14:04