chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

美信半導(dǎo)體新型神經(jīng)網(wǎng)絡(luò)加速器MAX78000 SoC

貿(mào)澤電子設(shè)計(jì)圈 ? 來(lái)源:貿(mào)澤電子設(shè)計(jì)圈 ? 作者:貿(mào)澤電子設(shè)計(jì)圈 ? 2021-01-04 11:48 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

新型神經(jīng)網(wǎng)絡(luò)加速器

Maxim Integrated的新型MAX78000芯片,基于雙核MCU,結(jié)合了超低功耗深度神經(jīng)網(wǎng)絡(luò)加速器,為高性能人工智能 (AI) 應(yīng)用提供所需的算力,是機(jī)器視覺(jué)、面部識(shí)別、目標(biāo)檢測(cè)和分類、時(shí)序數(shù)據(jù)處理和音頻處理等應(yīng)用的理想選擇。 Maxim MAX78000集成了兩個(gè)MCU核心用于系統(tǒng)控制,即ArmCortex-M4處理器和32位RISC-V處理器。RISC-V處理器的特殊功能支持以低功耗將數(shù)據(jù)快速加載到神經(jīng)網(wǎng)絡(luò)加速器。MAX78000的卷積神經(jīng)網(wǎng)絡(luò) (CNN) 加速器具有442-KB的權(quán)重存儲(chǔ)空間,因此與運(yùn)行在低功耗微控制器上的軟件解決方案相比,在配置并加載了數(shù)據(jù)后,MAX78000運(yùn)行AI推理的速度快了100倍,功耗還不到其1%。 MAX78000處理器提供高效的電源管理,最大限度地延長(zhǎng)電池供電的物聯(lián)網(wǎng) (IoT) 設(shè)備的續(xù)航時(shí)間。

通過(guò)動(dòng)態(tài)電壓調(diào)整,該處理器將活動(dòng)核心的功耗降至最低,在低功耗模式下可選擇SRAM保持。該處理器將低功耗性能與高效計(jì)算結(jié)合在一起,將延遲降低了100倍,并能夠在物聯(lián)網(wǎng)邊緣執(zhí)行AI推理。 MAX78000擁有配套的MAX78000評(píng)估套件。除了MAX78000處理器,此評(píng)估套件還包含數(shù)字麥克風(fēng)、陀螺儀/加速度計(jì)和3.5英寸觸摸式彩色TFT顯示屏,同時(shí)支持并行攝像頭模塊。另外貿(mào)澤還供應(yīng)MAX78000FTHR,這是一款采用Adafruit Feather 外形尺寸的開(kāi)發(fā)板,專門(mén)用于小型系統(tǒng)的快速原型設(shè)計(jì)。

原文標(biāo)題:一周新品|Maxim Integrated新型神經(jīng)網(wǎng)絡(luò)加速器MAX78000 SoC

文章出處:【微信公眾號(hào):貿(mào)澤電子設(shè)計(jì)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    462

    文章

    53499

    瀏覽量

    458491
  • 加速器
    +關(guān)注

    關(guān)注

    2

    文章

    835

    瀏覽量

    39707
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4825

    瀏覽量

    106731

原文標(biāo)題:一周新品|Maxim Integrated新型神經(jīng)網(wǎng)絡(luò)加速器MAX78000 SoC

文章出處:【微信號(hào):Mouser-Community,微信公眾號(hào):貿(mào)澤電子設(shè)計(jì)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測(cè)試

    CNN算法簡(jiǎn)介 我們硬件加速器的模型為L(zhǎng)enet-5的變型,網(wǎng)絡(luò)粗略分共有7層,細(xì)分共有13層。包括卷積,最大池化層,激活層,扁平層,全連接層。下面是各層作用介紹: 卷積層:提取特征?!安蝗?/div>
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    NMSIS NN 軟件庫(kù)是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫(kù)分為多個(gè)功能,每個(gè)功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    SNN加速器內(nèi)部神經(jīng)元數(shù)據(jù)連接方式

    的數(shù)量級(jí),而且生物軸突的延遲和神經(jīng)元的時(shí)間常數(shù)比數(shù)字電路的傳播和轉(zhuǎn)換延遲要大得多,AER 的工作方式和神經(jīng)網(wǎng)絡(luò)的特點(diǎn)相吻合,所以受生物啟發(fā)的神經(jīng)形態(tài)處理中的NoC或SNN
    發(fā)表于 10-24 07:34

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速器上。首先需要將所有權(quán)重?cái)?shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲(chǔ)內(nèi)。 在仿真環(huán)境下,可將其存于一個(gè)文件,并在 Verilog 代碼中通過(guò) read
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡(jiǎn)介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲(chóng)的
    的頭像 發(fā)表于 09-28 10:03 ?647次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+神經(jīng)形態(tài)計(jì)算、類腦芯片

    AI芯片不僅包括深度學(xué)細(xì)AI加速器,還有另外一個(gè)主要列別:類腦芯片。類腦芯片是模擬人腦神經(jīng)網(wǎng)絡(luò)架構(gòu)的芯片。它結(jié)合微電子技術(shù)和新型神經(jīng)形態(tài)器件,模仿人腦
    發(fā)表于 09-17 16:43

    神經(jīng)網(wǎng)絡(luò)的并行計(jì)算與加速技術(shù)

    問(wèn)題。因此,并行計(jì)算與加速技術(shù)在神經(jīng)網(wǎng)絡(luò)研究和應(yīng)用中變得至關(guān)重要,它們能夠顯著提升神經(jīng)網(wǎng)絡(luò)的性能和效率,滿足實(shí)際應(yīng)用中對(duì)快速響應(yīng)和大規(guī)模數(shù)據(jù)處理的需求。神經(jīng)網(wǎng)絡(luò)并行
    的頭像 發(fā)表于 09-17 13:31 ?873次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計(jì)算與<b class='flag-5'>加速</b>技術(shù)

    MAX7800X AI 微控制開(kāi)發(fā)人員資源

    加速器。 使用 MAX78000MAX78002 超低功耗 AI 微控制。MAX78000
    的頭像 發(fā)表于 05-14 15:09 ?1176次閱讀
    <b class='flag-5'>MAX</b>7800X AI 微控制<b class='flag-5'>器</b>開(kāi)發(fā)人員資源

    MAX78000采用超低功耗卷積神經(jīng)網(wǎng)絡(luò)加速度計(jì)的人工智能微控制技術(shù)手冊(cè)

    人工智能(AI)需要超強(qiáng)的計(jì)算能力,而Maxim則大大降低了AI計(jì)算所需的功耗。MAX78000是一款新型的AI微控制,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理
    的頭像 發(fā)表于 05-08 11:42 ?706次閱讀
    <b class='flag-5'>MAX78000</b>采用超低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速</b>度計(jì)的人工智能微控制<b class='flag-5'>器</b>技術(shù)手冊(cè)

    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制技術(shù)手冊(cè)

    人工智能(AI)需要超強(qiáng)的計(jì)算能力,而Maxim則大大降低了AI計(jì)算所需的功耗。MAX78002是一款新型的AI微控制,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理
    的頭像 發(fā)表于 05-08 10:16 ?585次閱讀
    <b class='flag-5'>MAX</b>78002帶有低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速器</b>的人工智能微控制<b class='flag-5'>器</b>技術(shù)手冊(cè)

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過(guò)權(quán)重連接。信號(hào)在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?1281次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1323次閱讀

    ADI 新型AI微控制 # MAX78000 數(shù)據(jù)手冊(cè)和芯片介紹

    MAX78000是一款新型的AI微控制,使神經(jīng)網(wǎng)絡(luò)能夠在互聯(lián)網(wǎng)邊緣端以超低功耗運(yùn)行,將高能效的AI處理與經(jīng)過(guò)驗(yàn)證的ADI/Maxim超低功耗微控制
    的頭像 發(fā)表于 02-08 16:50 ?1377次閱讀
    ADI <b class='flag-5'>新型</b>AI微控制<b class='flag-5'>器</b> # <b class='flag-5'>MAX78000</b> 數(shù)據(jù)手冊(cè)和芯片介紹

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?2214次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    ANN神經(jīng)網(wǎng)絡(luò)——器件建模

    隨著半導(dǎo)體行業(yè)的新材料、新工藝、新器件的不斷發(fā)展,人工神經(jīng)網(wǎng)絡(luò)作為一種替代方法已經(jīng)被引入器件建模領(lǐng)域。本文介紹了ANN神經(jīng)網(wǎng)絡(luò)建模的起源、優(yōu)勢(shì)、實(shí)現(xiàn)方式和應(yīng)用場(chǎng)景。 ? 隨著半導(dǎo)體行業(yè)
    的頭像 發(fā)表于 01-06 13:41 ?1641次閱讀
    ANN<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>——器件建模