chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

圖像分割的方法,包括傳統(tǒng)方法和深度學(xué)習(xí)方法

Dbwd_Imgtec ? 來源:AI公園 ? 作者:AI公園 ? 2021-01-08 14:44 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀

介紹使圖像分割的方法,包括傳統(tǒng)方法和深度學(xué)習(xí)方法,以及應(yīng)用場景。

基于人工智能和深度學(xué)習(xí)方法的現(xiàn)代計(jì)算機(jī)視覺技術(shù)在過去10年里取得了顯著進(jìn)展。如今,它被用于圖像分類、人臉識(shí)別、圖像中物體的識(shí)別、視頻分析和分類以及機(jī)器人自動(dòng)駕駛車輛的圖像處理等應(yīng)用上。

許多計(jì)算機(jī)視覺任務(wù)需要對圖像進(jìn)行智能分割,以理解圖像中的內(nèi)容,并使每個(gè)部分的分析更加容易。今天的圖像分割技術(shù)使用計(jì)算機(jī)視覺深度學(xué)習(xí)模型來理解圖像的每個(gè)像素所代表的真實(shí)物體,這在十年前是無法想象的。

深度學(xué)習(xí)可以學(xué)習(xí)視覺輸入的模式,以預(yù)測組成圖像的對象類。用于圖像處理的主要深度學(xué)習(xí)架構(gòu)是卷積神經(jīng)網(wǎng)絡(luò)(CNN),或者是特定的CNN框架,如AlexNet、VGG、Inception和ResNet。計(jì)算機(jī)視覺的深度學(xué)習(xí)模型通常在專門的圖形處理單元(GPU)上訓(xùn)練和執(zhí)行,以減少計(jì)算時(shí)間。

什么是圖像分割?

圖像分割是計(jì)算機(jī)視覺中的一個(gè)關(guān)鍵過程。它包括將視覺輸入分割成片段以簡化圖像分析。片段表示目標(biāo)或目標(biāo)的一部分,并由像素集或“超像素”組成。圖像分割將像素組織成更大的部分,消除了將單個(gè)像素作為觀察單位的需要。圖像分析有三個(gè)層次:

分類

將整幅圖片分成“人”、“動(dòng)物”、“戶外”等類別

目標(biāo)檢測 檢測圖像中的目標(biāo)并在其周圍畫一個(gè)矩形,例如一個(gè)人或一只羊。

分割 識(shí)別圖像的部分,并理解它們屬于什么對象。分割是進(jìn)行目標(biāo)檢測和分類的基礎(chǔ)。

語義分割 vs. 實(shí)例分割

在分割過程本身,有兩個(gè)粒度級別:

語義分割將圖像中的所有像素劃分為有意義的對象類。這些類是“語義上可解釋的”,并對應(yīng)于現(xiàn)實(shí)世界的類別。例如,你可以將與貓相關(guān)的所有像素分離出來,并將它們涂成綠色。這也被稱為dense預(yù)測,因?yàn)樗A(yù)測了每個(gè)像素的含義。

實(shí)例分割

標(biāo)識(shí)圖像中每個(gè)對象的每個(gè)實(shí)例。它與語義分割的不同之處在于它不是對每個(gè)像素進(jìn)行分類。如果一幅圖像中有三輛車,語義分割將所有的車分類為一個(gè)實(shí)例,而實(shí)例分割則識(shí)別每一輛車。

傳統(tǒng)的圖像分割方法

還有一些過去常用的圖像分割技術(shù),但效率不如深度學(xué)習(xí)技術(shù),因?yàn)樗鼈兪褂脟?yán)格的算法,需要人工干預(yù)和專業(yè)知識(shí)。這些包括:

閾值

將圖像分割為前景和背景。指定的閾值將像素分為兩個(gè)級別之一,以隔離對象。閾值化將灰度圖像轉(zhuǎn)換為二值圖像或?qū)⒉噬珗D像的較亮和較暗像素進(jìn)行區(qū)分。

K-means聚類

算法識(shí)別數(shù)據(jù)中的組,變量K表示組的數(shù)量。該算法根據(jù)特征相似性將每個(gè)數(shù)據(jù)點(diǎn)(或像素)分配到其中一組。聚類不是分析預(yù)定義的組,而是迭代地工作,從而有機(jī)地形成組。

基于直方圖的圖像分割

使用直方圖根據(jù)“灰度”對像素進(jìn)行分組。簡單的圖像由一個(gè)對象和一個(gè)背景組成。背景通常是一個(gè)灰度級,是較大的實(shí)體。因此,一個(gè)較大的峰值代表了直方圖中的背景灰度。一個(gè)較小的峰值代表這個(gè)物體,這是另一個(gè)灰色級別。

邊緣檢測識(shí)別亮度的急劇變化或不連續(xù)的地方。邊緣檢測通常包括將不連續(xù)點(diǎn)排列成曲線線段或邊緣。例如,一塊紅色和一塊藍(lán)色之間的邊界。

深度學(xué)習(xí)如何助力圖像分割方法

現(xiàn)代圖像分割技術(shù)以深度學(xué)習(xí)技術(shù)為動(dòng)力。

下面是幾種用于分割的深度學(xué)習(xí)架構(gòu):

使用CNN進(jìn)行圖像分割,是將圖像的patch作為輸入輸入給卷積神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò)對像素進(jìn)行標(biāo)記。CNN不能一次處理整個(gè)圖像。它掃描圖像,每次看一個(gè)由幾個(gè)像素組成的小“濾鏡”,直到它映射出整個(gè)圖像。

傳統(tǒng)的cnn網(wǎng)絡(luò)具有全連接的層,不能處理不同的輸入大小。FCNs使用卷積層來處理不同大小的輸入,可以工作得更快。最終的輸出層具有較大的感受野,對應(yīng)于圖像的高度和寬度,而通道的數(shù)量對應(yīng)于類的數(shù)量。卷積層對每個(gè)像素進(jìn)行分類,以確定圖像的上下文,包括目標(biāo)的位置。

集成學(xué)習(xí)將兩個(gè)或兩個(gè)以上相關(guān)分析模型的結(jié)果合成為單個(gè)。集成學(xué)習(xí)可以提高預(yù)測精度,減少泛化誤差。這樣就可以對圖像進(jìn)行精確的分類和分割。通過集成學(xué)習(xí)嘗試生成一組弱的基礎(chǔ)學(xué)習(xí)器,對圖像的部分進(jìn)行分類,并組合它們的輸出,而不是試圖創(chuàng)建一個(gè)單一的最優(yōu)學(xué)習(xí)者。

DeepLab使用DeepLab的一個(gè)主要?jiǎng)訖C(jī)是在幫助控制信號(hào)抽取的同時(shí)執(zhí)行圖像分割 —— 減少樣本的數(shù)量和網(wǎng)絡(luò)必須處理的數(shù)據(jù)量。另一個(gè)動(dòng)機(jī)是啟用多尺度上下文特征學(xué)習(xí) —— 從不同尺度的圖像中聚合特征。DeepLab使用ImageNet預(yù)訓(xùn)練的ResNet進(jìn)行特征提取。DeepLab使用空洞卷積而不是規(guī)則的卷積。每個(gè)卷積的不同擴(kuò)張率使ResNet塊能夠捕獲多尺度的上下文信息。

DeepLab由三個(gè)部分組成:

Atrous convolutions

使用一個(gè)因子,可以擴(kuò)展或收縮卷積濾波器的視場。

ResNet微軟的深度卷積網(wǎng)絡(luò)(DCNN)。它提供了一個(gè)框架,可以在保持性能的同時(shí)訓(xùn)練數(shù)千個(gè)層。ResNet強(qiáng)大的表征能力促進(jìn)了計(jì)算機(jī)視覺應(yīng)用的發(fā)展,如物體檢測和人臉識(shí)別。

Atrous spatial pyramid pooling (ASPP)提供多尺度信息。它使用一組具有不同擴(kuò)展率的復(fù)雜函數(shù)來捕獲大范圍的上下文。ASPP還使用全局平均池(GAP)來合并圖像級特征并添加全局上下文信息。

SegNet neural network 一種基于深度編碼器和解碼器的架構(gòu),也稱為語義像素分割。它包括對輸入圖像進(jìn)行低維編碼,然后在解碼器中利用方向不變性能力恢復(fù)圖像。然后在解碼器端生成一個(gè)分割圖像。

d2d8bfda-44a1-11eb-8b86-12bb97331649.png

圖像分割的應(yīng)用

圖像分割有助于確定目標(biāo)之間的關(guān)系,以及目標(biāo)在圖像中的上下文。應(yīng)用包括人臉識(shí)別、車牌識(shí)別和衛(wèi)星圖像分析。例如,零售和時(shí)尚等行業(yè)在基于圖像的搜索中使用了圖像分割。自動(dòng)駕駛汽車用它來了解周圍的環(huán)境。

目標(biāo)檢測和人臉檢測

這些應(yīng)用包括識(shí)別數(shù)字圖像中特定類的目標(biāo)實(shí)例。語義對象可以分類成類,如人臉、汽車、建筑物或貓。

人臉檢測

一種用于許多應(yīng)用的目標(biāo)檢測,包括數(shù)字相機(jī)的生物識(shí)別和自動(dòng)對焦功能。算法檢測和驗(yàn)證面部特征的存在。例如,眼睛在灰度圖像中顯示為谷地。

醫(yī)學(xué)影像

從醫(yī)學(xué)影像中提取臨床相關(guān)信息。例如,放射學(xué)家可以使用機(jī)器學(xué)習(xí)來增強(qiáng)分析,通過將圖像分割成不同的器官、組織類型或疾病癥狀。這可以減少運(yùn)行診斷測試所需的時(shí)間。

機(jī)器視覺

捕捉和處理圖像,為設(shè)備提供操作指導(dǎo)的應(yīng)用。這包括工業(yè)和非工業(yè)的應(yīng)用。機(jī)器視覺系統(tǒng)使用專用攝像機(jī)中的數(shù)字傳感器,使計(jì)算機(jī)硬件和軟件能夠測量、處理和分析圖像。例如,檢測系統(tǒng)為汽水瓶拍照,然后根據(jù)合格 - 不合格標(biāo)準(zhǔn)分析圖像,以確定瓶子是否被正確地填充。

視頻監(jiān)控 — 視頻跟蹤和運(yùn)動(dòng)目標(biāo)跟蹤

這涉及到在視頻中定位移動(dòng)物體。其用途包括安全和監(jiān)視、交通控制、人機(jī)交互和視頻編輯。

自動(dòng)駕駛

自動(dòng)駕駛汽車必須能夠感知和理解他們的環(huán)境,以便安全駕駛。相關(guān)類別的對象包括其他車輛、建筑物和行人。語義分割使自動(dòng)駕駛汽車能夠識(shí)別圖像中的哪些區(qū)域可以安全駕駛。

虹膜識(shí)別

一種能識(shí)別復(fù)雜虹膜圖案的生物特征識(shí)別技術(shù)。它使用自動(dòng)模式識(shí)別來分析人眼的視頻圖像。

人臉識(shí)別

從視頻中識(shí)別個(gè)體。這項(xiàng)技術(shù)將從輸入圖像中選擇的面部特征與數(shù)據(jù)庫中的人臉進(jìn)行比較。

零售圖像識(shí)別

這個(gè)應(yīng)用讓零售商了解貨架上商品的布局。算法實(shí)時(shí)處理產(chǎn)品數(shù)據(jù),檢測貨架上是否有商品。如果有產(chǎn)品缺貨,他們可以找出原因,通知跟單員,并為供應(yīng)鏈的相應(yīng)部分推薦解決方案。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 圖像識(shí)別
    +關(guān)注

    關(guān)注

    9

    文章

    527

    瀏覽量

    39115
  • 圖像分割
    +關(guān)注

    關(guān)注

    4

    文章

    182

    瀏覽量

    18341
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122798

原文標(biāo)題:深度學(xué)習(xí)中的圖像分割:方法和應(yīng)用

文章出處:【微信號(hào):Imgtec,微信公眾號(hào):Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    大模型推理顯存和計(jì)算量估計(jì)方法研究

    、顯存估計(jì)方法 基于模型結(jié)構(gòu)的顯存估計(jì) 根據(jù)深度學(xué)習(xí)模型的層次結(jié)構(gòu)和參數(shù)數(shù)量,可以估算模型在推理過程中所需的顯存大小。具體方法如下: (1)統(tǒng)計(jì)模型中各層參數(shù)數(shù)量,
    發(fā)表于 07-03 19:43

    第一章 W55MH32 高性能以太網(wǎng)單片機(jī)的學(xué)習(xí)方法概述

    本章介紹W55MH32的學(xué)習(xí)方法,建議先了解硬件資源,按基礎(chǔ)篇、入門篇循序漸進(jìn)學(xué)習(xí)。參考兩份手冊,提供例程資料,還給出官網(wǎng)、github 等學(xué)習(xí)資料查找渠道。讓我們一起踏上W55MH32高性能以太網(wǎng)單片機(jī)的
    的頭像 發(fā)表于 05-26 09:07 ?109次閱讀
    第一章 W55MH32 高性能以太網(wǎng)單片機(jī)的<b class='flag-5'>學(xué)習(xí)方法</b>概述

    一種無刷直流電機(jī)霍耳信號(hào)與定子繞組關(guān)系自學(xué)習(xí)方法

    的關(guān)系。提出了一種無刷直流電機(jī)霍耳信號(hào)與定子繞組關(guān)系自學(xué)習(xí)方法,該方法通過不同的繞組通電組合將電機(jī)轉(zhuǎn)子依次轉(zhuǎn)到6個(gè)不同的位置并記錄對應(yīng)的霍耳信號(hào),然后得出霍耳信號(hào)與定子繞組的對應(yīng)關(guān)系。所提出的方法快速
    發(fā)表于 03-25 15:15

    DeepSeek與Kimi揭示o1秘密,思維鏈學(xué)習(xí)方法顯成效

    據(jù)消息,OpenAI近日發(fā)布了一項(xiàng)重要研究報(bào)告。報(bào)告指出,DeepSeek和Kimi兩家機(jī)構(gòu)通過獨(dú)立研究,成功利用思維鏈學(xué)習(xí)方法,在數(shù)學(xué)解題與編程挑戰(zhàn)中顯著提升了模型的綜合表現(xiàn)。 Kimi的研究員
    的頭像 發(fā)表于 02-18 15:13 ?473次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度學(xué)習(xí)相比
    的頭像 發(fā)表于 12-30 09:16 ?1192次閱讀
    <b class='flag-5'>傳統(tǒng)</b>機(jī)器<b class='flag-5'>學(xué)習(xí)方法</b>和應(yīng)用指導(dǎo)

    激光焊縫跟蹤器與傳統(tǒng)焊縫檢測方法的對比

    在焊接自動(dòng)化的推動(dòng)下,焊縫檢測技術(shù)逐漸成為焊接質(zhì)量控制的重要環(huán)節(jié)。傳統(tǒng)的焊縫檢測方法在一定程度上滿足了生產(chǎn)需求,但隨著工業(yè)應(yīng)用對精度和效率要求的提升,激光焊縫跟蹤器逐漸成為一種更具競爭力的解決方案。今天一起了解激光焊縫跟蹤器與傳統(tǒng)
    的頭像 發(fā)表于 11-28 16:47 ?606次閱讀
    激光焊縫跟蹤器與<b class='flag-5'>傳統(tǒng)</b>焊縫檢測<b class='flag-5'>方法</b>的對比

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆]有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的機(jī)器學(xué)習(xí)的定義是“利用經(jīng)
    的頭像 發(fā)表于 11-16 01:07 ?965次閱讀
    什么是機(jī)器<b class='flag-5'>學(xué)習(xí)</b>?通過機(jī)器<b class='flag-5'>學(xué)習(xí)方法</b>能解決哪些問題?

    基于LSTM神經(jīng)網(wǎng)絡(luò)的情感分析方法

    情感分析是自然語言處理(NLP)領(lǐng)域的一項(xiàng)重要任務(wù),旨在識(shí)別和提取文本中的主觀信息,如情感傾向、情感強(qiáng)度等。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,基于LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)的情感分析方法因其出色的序列建模
    的頭像 發(fā)表于 11-13 10:15 ?1281次閱讀

    EDA與傳統(tǒng)設(shè)計(jì)方法的區(qū)別

    : EDA工具通過軟件自動(dòng)化大部分設(shè)計(jì)流程,包括電路設(shè)計(jì)、仿真、驗(yàn)證和布局布線等。這種自動(dòng)化不僅提高了設(shè)計(jì)效率,還減少了人為錯(cuò)誤的可能性。 傳統(tǒng)方法傳統(tǒng)設(shè)計(jì)
    的頭像 發(fā)表于 11-08 13:47 ?1336次閱讀

    基于深度學(xué)習(xí)的三維點(diǎn)云分類方法

    近年來,點(diǎn)云表示已成為計(jì)算機(jī)視覺領(lǐng)域的研究熱點(diǎn)之一,并廣泛應(yīng)用于自動(dòng)駕駛、虛擬現(xiàn)實(shí)、機(jī)器人等許多領(lǐng)域。雖然深度學(xué)習(xí)技術(shù)在處理常規(guī)結(jié)構(gòu)化的二維網(wǎng)格圖像數(shù)據(jù)方面取得了巨大成功,但在處理不規(guī)則、非結(jié)構(gòu)化的點(diǎn)云數(shù)據(jù)方面仍面臨著巨大挑戰(zhàn)。
    的頭像 發(fā)表于 10-29 09:43 ?1584次閱讀
    基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的三維點(diǎn)云分類<b class='flag-5'>方法</b>

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?659次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的<b class='flag-5'>方法</b>

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是
    的頭像 發(fā)表于 10-27 11:13 ?1381次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2897次閱讀

    電子封裝 | Die Bonding 芯片鍵合的主要方法和工藝

    傳統(tǒng)方法和先進(jìn)方法。傳統(tǒng)方法包括晶片連接和電線連接,而先進(jìn)的
    的頭像 發(fā)表于 09-20 08:04 ?1938次閱讀
    電子封裝 | Die Bonding 芯片鍵合的主要<b class='flag-5'>方法</b>和工藝

    深度識(shí)別算法包括哪些內(nèi)容

    深度識(shí)別算法是深度學(xué)習(xí)領(lǐng)域的一個(gè)重要組成部分,它利用深度神經(jīng)網(wǎng)絡(luò)模型對輸入數(shù)據(jù)進(jìn)行高層次的理解和識(shí)別。深度識(shí)別算法涵蓋了多個(gè)方面的內(nèi)容,主要
    的頭像 發(fā)表于 09-10 15:28 ?843次閱讀