chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于PyTorch的深度學(xué)習(xí)入門(mén)教程之PyTorch簡(jiǎn)單知識(shí)

ss ? 來(lái)源:雁回晴空 ? 作者:雁回晴空 ? 2021-02-16 15:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文參考PyTorch官網(wǎng)的教程,分為五個(gè)基本模塊來(lái)介紹PyTorch。為了避免文章過(guò)長(zhǎng),這五個(gè)模塊分別在五篇博文中介紹。

Part1:PyTorch簡(jiǎn)單知識(shí)

Part2:PyTorch的自動(dòng)梯度計(jì)算

Part3:使用PyTorch構(gòu)建一個(gè)神經(jīng)網(wǎng)絡(luò)

Part4:訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)分類(lèi)器

Part5:數(shù)據(jù)并行化

本文是關(guān)于Part1的內(nèi)容。

Part1:PyTorch簡(jiǎn)單知識(shí)

PyTorch是一個(gè)基于Python的科學(xué)計(jì)算框架,用于進(jìn)行深度學(xué)習(xí)相關(guān)研究。對(duì)于Python語(yǔ)言的入門(mén),可以參考之前的兩篇介紹Python&Numpy的博客。分別是Python& Numpy 教程(上) 和Python & Numpy 教程(下)。這里我們就直接介紹PyTorch中的基本操作。

1 Tensors

Tensors與numpy中的ndarray類(lèi)似,但是Tensors支持GPU運(yùn)算。首先來(lái)做一些簡(jiǎn)單的例子。

導(dǎo)入基本的package:


		

構(gòu)建一個(gè)5*3的未初始化的矩陣:

x = torch.Tensor(5, 3)
print(x)

構(gòu)建一個(gè)隨機(jī)初始化矩陣:

x = torch.rand(5, 3)
print(x)

獲取矩陣的size:

print(x.size())

注意,torch.Size實(shí)際上是一個(gè)tuple,所以它支持相同的運(yùn)算。

2 運(yùn)算(Operations)

運(yùn)算可以使用多種語(yǔ)法表示,我們以加法為例子來(lái)說(shuō)明。

加法:語(yǔ)法1

y = torch.rand(5, 3)
print(x + y)

加法:語(yǔ)法2

print(torch.add(x, y))

加法:給定輸出的tensor

result = torch.Tensor(5, 3)
torch.add(x, y, out=result)
print(result)

加法:原地進(jìn)行(in-place)的加法

# adds x to y
y.add_(x)
print(y)

注意,任何原地改變tensor的運(yùn)算后邊會(huì)后綴一個(gè)“_”,例如:x.copy_(y),x.t_(),會(huì)改變x的值。

你可以使用標(biāo)準(zhǔn)的numpy方式的索引。

print(x[:, 1])

3 NumpyBridge

將torch的Tensor轉(zhuǎn)換為numpy的array,反之亦然。

torch的Tensor和numpy的array分享底層的內(nèi)存地址,所以改變其中一個(gè)就會(huì)改變另一個(gè)。

將torch Tensor轉(zhuǎn)換為numpy array

a = torch.ones(5)
print(a)
b = a.numpy()
print(b)

觀察numpy array的值怎樣改變。

a.add_(1)
print(a)
print(b)

將numpy array 轉(zhuǎn)換為torch Tensor

看一下改變numpy array的值是怎樣同時(shí)改變torch Tensor的。

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

CPU上的所有Tensors(除了CharTensor)支持到Numpy的雙向轉(zhuǎn)換。

4 CUDA Tensors

通過(guò)使用 .cuda 函數(shù),Tensors可以被移動(dòng)到GPU。

# let us run this cell only if CUDA is available
if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    x + y

責(zé)任編輯:xj

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 數(shù)據(jù)
    +關(guān)注

    關(guān)注

    8

    文章

    7322

    瀏覽量

    94282
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    813

    瀏覽量

    14781
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    機(jī)器學(xué)習(xí)深度學(xué)習(xí)中需避免的 7 個(gè)常見(jiàn)錯(cuò)誤與局限性

    無(wú)論你是剛入門(mén)還是已經(jīng)從事人工智能模型相關(guān)工作一段時(shí)間,機(jī)器學(xué)習(xí)深度學(xué)習(xí)中都存在一些我們需要時(shí)刻關(guān)注并銘記的常見(jiàn)錯(cuò)誤。如果對(duì)這些錯(cuò)誤置之不理,日后可能會(huì)引發(fā)諸多麻煩!只要我們密切關(guān)注
    的頭像 發(fā)表于 01-07 15:37 ?107次閱讀
    機(jī)器<b class='flag-5'>學(xué)習(xí)</b>和<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>中需避免的 7 個(gè)常見(jiàn)錯(cuò)誤與局限性

    學(xué)習(xí)物聯(lián)網(wǎng)怎么入門(mén)?

    景等。同時(shí),學(xué)習(xí)物聯(lián)網(wǎng)的基本技術(shù),如傳感器技術(shù)、通信技術(shù)、云計(jì)算等,也是非常重要的。 其次,選擇適合自己的學(xué)習(xí)方式也是入門(mén)學(xué)習(xí)物聯(lián)網(wǎng)的重要一步。
    發(fā)表于 10-14 10:34

    摩爾線(xiàn)程發(fā)布Torch-MUSA v2.1.1版本

    近日,摩爾線(xiàn)程發(fā)布其面向PyTorch深度學(xué)習(xí)框架的MUSA擴(kuò)展庫(kù)——Torch-MUSA v2.1.1。該版本在v2.1.0的基礎(chǔ)上,進(jìn)一步擴(kuò)展了對(duì)大規(guī)模深度
    的頭像 發(fā)表于 09-10 11:02 ?883次閱讀

    Arm方案 基于Arm架構(gòu)的邊緣側(cè)設(shè)備(樹(shù)莓派或 NVIDIA Jetson Nano)上部署PyTorch模型

    本文將為你展示如何在樹(shù)莓派或 NVIDIA Jetson Nano 等基于 Arm 架構(gòu)的邊緣側(cè)設(shè)備上部署 PyTorch 模型。
    的頭像 發(fā)表于 07-28 11:50 ?2670次閱讀

    ARM入門(mén)學(xué)習(xí)方法分享

    的關(guān)鍵。一旦你掌握了ARM的基本概念和匯編語(yǔ)言,你可以開(kāi)始進(jìn)行一些簡(jiǎn)單的ARM項(xiàng)目。你可以嘗試編寫(xiě)一些簡(jiǎn)單的程序,如LED閃爍、按鍵輸入等,以加強(qiáng)你的實(shí)踐能力。 五、學(xué)習(xí)硬件知識(shí):要
    發(fā)表于 07-23 10:21

    Nordic收購(gòu) Neuton.AI 關(guān)于產(chǎn)品技術(shù)的分析

    Nordic Semiconductor 于 2025 年收購(gòu)了 Neuton.AI,這是一家專(zhuān)注于超小型機(jī)器學(xué)習(xí)(TinyML)解決方案的公司。 Neuton 開(kāi)發(fā)了一種獨(dú)特的神經(jīng)網(wǎng)絡(luò)框架,能夠
    發(fā)表于 06-28 14:18

    跟老齊學(xué)Python:從入門(mén)到精通

    本帖最后由 yuu_cool 于 2025-6-3 16:52 編輯 本資料是面向編程零基礎(chǔ)讀者的Python 入門(mén)教程,內(nèi)容涵蓋了Python 的基礎(chǔ)知識(shí)和初步應(yīng)用。以比較輕快的風(fēng)格,向零基
    發(fā)表于 06-03 16:10

    摩爾線(xiàn)程發(fā)布Torch-MUSA v2.0.0版本 支持原生FP8和PyTorch 2.5.0

    近日,摩爾線(xiàn)程正式發(fā)布Torch-MUSA v2.0.0版本,這是其面向PyTorch深度學(xué)習(xí)框架的MUSA擴(kuò)展庫(kù)的重要升級(jí)。新版本基于MUSA Compute Capability 3.1計(jì)算架構(gòu)
    的頭像 發(fā)表于 05-11 16:41 ?1475次閱讀

    海思SS626開(kāi)發(fā)板

    識(shí)別/運(yùn)動(dòng)跟蹤等)。 主板集成常用視頻硬件接口,所有外設(shè)接口電路均通過(guò)嚴(yán)格的抗干擾測(cè)試,使產(chǎn)品在 EMC 及穩(wěn)定性方面 具有良好表現(xiàn);使用通過(guò)穩(wěn)定性測(cè)試及深度優(yōu)化的系統(tǒng)軟件(Linux 系統(tǒng)),支持業(yè)界主流深度學(xué)習(xí)框架(如 Ca
    發(fā)表于 04-24 10:04

    邊緣AI新突破:MemryX AI加速卡與RK3588打造高效多路物體檢測(cè)方案

    及對(duì)主流深度學(xué)習(xí)框架 (如 TensorFlow、PyTorch、ONNX) 的支持,即便是新手也能快速上手,輕松部署 AI 模型,實(shí)現(xiàn)智能應(yīng)用開(kāi)發(fā)。
    的頭像 發(fā)表于 03-06 10:45 ?951次閱讀
    邊緣AI新突破:MemryX AI加速卡與RK3588打造高效多路物體檢測(cè)方案

    使用OpenVINO? 2021.4將經(jīng)過(guò)訓(xùn)練的自定義PyTorch模型加載為IR格式時(shí)遇到錯(cuò)誤怎么解決?

    使用 OpenVINO? 2021.4 將經(jīng)過(guò)訓(xùn)練的自定義 PyTorch 模型加載為 IR 格式時(shí)遇到錯(cuò)誤: RuntimeError: [ GENERAL_ERROR ] Failed
    發(fā)表于 03-05 08:40

    如何在Arm Ethos-U85上使用ExecuTorch

    在快速發(fā)展的機(jī)器學(xué)習(xí)領(lǐng)域,PyTorch 憑借其靈活性和全面的生態(tài)系統(tǒng),已成為模型開(kāi)發(fā)的熱門(mén)框架。Arm 與 Meta 合作在 ExecuTorch 中引入了對(duì) Arm 平臺(tái)的支持,進(jìn)一步簡(jiǎn)化了模型算法開(kāi)發(fā)過(guò)程,實(shí)現(xiàn)無(wú)縫在邊緣側(cè)設(shè)備上部署
    的頭像 發(fā)表于 02-14 14:23 ?1115次閱讀
    如何在Arm Ethos-U85上使用ExecuTorch

    操作指南:pytorch云服務(wù)器怎么設(shè)置?

    設(shè)置PyTorch云服務(wù)器需選擇云平臺(tái),創(chuàng)建合適的GPU實(shí)例,安裝操作系統(tǒng)、Python及Anaconda,創(chuàng)建虛擬環(huán)境,根據(jù)CUDA版本安裝PyTorch,配置環(huán)境變量,最后驗(yàn)證安裝。過(guò)程中需考慮
    的頭像 發(fā)表于 02-08 10:33 ?699次閱讀

    深度學(xué)習(xí)入門(mén)簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,神經(jīng)元之間通過(guò)權(quán)重連接。我們構(gòu)建一個(gè)包含輸入層、隱藏層和輸出層的簡(jiǎn)
    的頭像 發(fā)表于 01-23 13:52 ?958次閱讀

    小安派BW21-CBV-Kit入門(mén)教程:中斷控制LED

    ,可以擴(kuò)展出無(wú)限可能。 BW21-CBV-Kit支持Arduino的開(kāi)發(fā)方式,可以簡(jiǎn)單實(shí)現(xiàn)一些DIY想法,例如:人臉識(shí)別、手勢(shì)識(shí)別、物品識(shí)別等。 ? 這次小安給大家?guī)?lái)的是快速入門(mén)教程之中斷控制 LED
    的頭像 發(fā)表于 01-21 11:32 ?1082次閱讀
    小安派BW21-CBV-Kit<b class='flag-5'>入門(mén)教程</b>:中斷控制LED