chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于PyTorch的深度學(xué)習(xí)入門教程之PyTorch簡單知識

ss ? 來源:雁回晴空 ? 作者:雁回晴空 ? 2021-02-16 15:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文參考PyTorch官網(wǎng)的教程,分為五個基本模塊來介紹PyTorch。為了避免文章過長,這五個模塊分別在五篇博文中介紹。

Part1:PyTorch簡單知識

Part2:PyTorch的自動梯度計算

Part3:使用PyTorch構(gòu)建一個神經(jīng)網(wǎng)絡(luò)

Part4:訓(xùn)練一個神經(jīng)網(wǎng)絡(luò)分類器

Part5:數(shù)據(jù)并行化

本文是關(guān)于Part1的內(nèi)容。

Part1:PyTorch簡單知識

PyTorch是一個基于Python的科學(xué)計算框架,用于進行深度學(xué)習(xí)相關(guān)研究。對于Python語言的入門,可以參考之前的兩篇介紹Python&Numpy的博客。分別是Python& Numpy 教程(上) 和Python & Numpy 教程(下)。這里我們就直接介紹PyTorch中的基本操作。

1 Tensors

Tensors與numpy中的ndarray類似,但是Tensors支持GPU運算。首先來做一些簡單的例子。

導(dǎo)入基本的package:


		

構(gòu)建一個5*3的未初始化的矩陣:

x = torch.Tensor(5, 3)
print(x)

構(gòu)建一個隨機初始化矩陣:

x = torch.rand(5, 3)
print(x)

獲取矩陣的size:

print(x.size())

注意,torch.Size實際上是一個tuple,所以它支持相同的運算。

2 運算(Operations)

運算可以使用多種語法表示,我們以加法為例子來說明。

加法:語法1

y = torch.rand(5, 3)
print(x + y)

加法:語法2

print(torch.add(x, y))

加法:給定輸出的tensor

result = torch.Tensor(5, 3)
torch.add(x, y, out=result)
print(result)

加法:原地進行(in-place)的加法

# adds x to y
y.add_(x)
print(y)

注意,任何原地改變tensor的運算后邊會后綴一個“_”,例如:x.copy_(y),x.t_(),會改變x的值。

你可以使用標(biāo)準(zhǔn)的numpy方式的索引。

print(x[:, 1])

3 NumpyBridge

將torch的Tensor轉(zhuǎn)換為numpy的array,反之亦然。

torch的Tensor和numpy的array分享底層的內(nèi)存地址,所以改變其中一個就會改變另一個。

將torch Tensor轉(zhuǎn)換為numpy array

a = torch.ones(5)
print(a)
b = a.numpy()
print(b)

觀察numpy array的值怎樣改變。

a.add_(1)
print(a)
print(b)

將numpy array 轉(zhuǎn)換為torch Tensor

看一下改變numpy array的值是怎樣同時改變torch Tensor的。

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

CPU上的所有Tensors(除了CharTensor)支持到Numpy的雙向轉(zhuǎn)換。

4 CUDA Tensors

通過使用 .cuda 函數(shù),Tensors可以被移動到GPU。

# let us run this cell only if CUDA is available
if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    x + y

責(zé)任編輯:xj

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)
    +關(guān)注

    關(guān)注

    8

    文章

    7314

    瀏覽量

    93914
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    812

    瀏覽量

    14663
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    摩爾線程發(fā)布Torch-MUSA v2.1.1版本

    近日,摩爾線程發(fā)布其面向PyTorch深度學(xué)習(xí)框架的MUSA擴展庫——Torch-MUSA v2.1.1。該版本在v2.1.0的基礎(chǔ)上,進一步擴展了對大規(guī)模深度
    的頭像 發(fā)表于 09-10 11:02 ?693次閱讀

    Arm方案 基于Arm架構(gòu)的邊緣側(cè)設(shè)備(樹莓派或 NVIDIA Jetson Nano)上部署PyTorch模型

    本文將為你展示如何在樹莓派或 NVIDIA Jetson Nano 等基于 Arm 架構(gòu)的邊緣側(cè)設(shè)備上部署 PyTorch 模型。
    的頭像 發(fā)表于 07-28 11:50 ?2463次閱讀

    跟老齊學(xué)Python:從入門到精通

    本帖最后由 yuu_cool 于 2025-6-3 16:52 編輯 本資料是面向編程零基礎(chǔ)讀者的Python 入門教程,內(nèi)容涵蓋了Python 的基礎(chǔ)知識和初步應(yīng)用。以比較輕快的風(fēng)格,向零基
    發(fā)表于 06-03 16:10

    摩爾線程發(fā)布Torch-MUSA v2.0.0版本 支持原生FP8和PyTorch 2.5.0

    近日,摩爾線程正式發(fā)布Torch-MUSA v2.0.0版本,這是其面向PyTorch深度學(xué)習(xí)框架的MUSA擴展庫的重要升級。新版本基于MUSA Compute Capability 3.1計算架構(gòu)
    的頭像 發(fā)表于 05-11 16:41 ?1239次閱讀

    海思SS626開發(fā)板

    識別/運動跟蹤等)。 主板集成常用視頻硬件接口,所有外設(shè)接口電路均通過嚴(yán)格的抗干擾測試,使產(chǎn)品在 EMC 及穩(wěn)定性方面 具有良好表現(xiàn);使用通過穩(wěn)定性測試及深度優(yōu)化的系統(tǒng)軟件(Linux 系統(tǒng)),支持業(yè)界主流深度學(xué)習(xí)框架(如 Ca
    發(fā)表于 04-24 10:04

    使用OpenVINO? 2021.4將經(jīng)過訓(xùn)練的自定義PyTorch模型加載為IR格式時遇到錯誤怎么解決?

    使用 OpenVINO? 2021.4 將經(jīng)過訓(xùn)練的自定義 PyTorch 模型加載為 IR 格式時遇到錯誤: RuntimeError: [ GENERAL_ERROR ] Failed
    發(fā)表于 03-05 08:40

    如何在Arm Ethos-U85上使用ExecuTorch

    在快速發(fā)展的機器學(xué)習(xí)領(lǐng)域,PyTorch 憑借其靈活性和全面的生態(tài)系統(tǒng),已成為模型開發(fā)的熱門框架。Arm 與 Meta 合作在 ExecuTorch 中引入了對 Arm 平臺的支持,進一步簡化了模型算法開發(fā)過程,實現(xiàn)無縫在邊緣側(cè)設(shè)備上部署
    的頭像 發(fā)表于 02-14 14:23 ?1000次閱讀
    如何在Arm Ethos-U85上使用ExecuTorch

    操作指南:pytorch云服務(wù)器怎么設(shè)置?

    設(shè)置PyTorch云服務(wù)器需選擇云平臺,創(chuàng)建合適的GPU實例,安裝操作系統(tǒng)、Python及Anaconda,創(chuàng)建虛擬環(huán)境,根據(jù)CUDA版本安裝PyTorch,配置環(huán)境變量,最后驗證安裝。過程中需考慮
    的頭像 發(fā)表于 02-08 10:33 ?593次閱讀

    深度學(xué)習(xí)入門簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個神經(jīng)元組成,神經(jīng)元之間通過權(quán)重連接。我們構(gòu)建一個包含輸入層、隱藏層和輸出層的
    的頭像 發(fā)表于 01-23 13:52 ?832次閱讀

    【「具身智能機器人系統(tǒng)」閱讀體驗】+兩本互為支持的書

    如何使用PyTorch進行數(shù)字圖像處理,它借助攝像頭來獲取視頻的圖像信息,然后通過已有的圖像識別框架模型經(jīng)深度學(xué)習(xí)和優(yōu)化以達到更精準(zhǔn)的識別結(jié)果,從而為進一步的執(zhí)行處理提供數(shù)據(jù)支持和依據(jù)。而《具身智能機器人系統(tǒng)
    發(fā)表于 01-01 15:50

    利用Arm Kleidi技術(shù)實現(xiàn)PyTorch優(yōu)化

    PyTorch 是一個廣泛應(yīng)用的開源機器學(xué)習(xí) (ML) 庫。近年來,Arm 與合作伙伴通力協(xié)作,持續(xù)改進 PyTorch 的推理性能。本文將詳細介紹如何利用 Arm Kleidi 技術(shù)提升 Arm
    的頭像 發(fā)表于 12-23 09:19 ?1594次閱讀
    利用Arm Kleidi技術(shù)實現(xiàn)<b class='flag-5'>PyTorch</b>優(yōu)化

    vLLM項目加入PyTorch生態(tài)系統(tǒng),引領(lǐng)LLM推理新紀(jì)元

    近日,vLLM項目宣布正式成為PyTorch生態(tài)系統(tǒng)的一部分,標(biāo)志著該項目與PyTorch的合作進入了一個全新的階段。本文將從以下幾個方面進行介紹,特別提醒:安裝方案在第四個部分,可選擇性閱讀
    的頭像 發(fā)表于 12-18 17:06 ?1557次閱讀
    vLLM項目加入<b class='flag-5'>PyTorch</b>生態(tài)系統(tǒng),引領(lǐng)LLM推理新紀(jì)元

    Linux從零到精通:最簡單的Shell腳本入門教程

    通過簡單的命令和腳本,實現(xiàn)對系統(tǒng)的靈活控制和自動化管理。 shell腳本前言 shell腳本入門 shell變量基礎(chǔ) shell變量子串 shell數(shù)值運算 條件表達式 流程控制語句 shell函數(shù)
    的頭像 發(fā)表于 12-05 09:56 ?2283次閱讀
    Linux從零到精通:最<b class='flag-5'>簡單</b>的Shell腳本<b class='flag-5'>入門教程</b>

    Arm KleidiAI助力提升PyTorch上LLM推理性能

    熱門的深度學(xué)習(xí)框架尤為突出,許多企業(yè)均會選擇其作為開發(fā) AI 應(yīng)用的庫。通過部署 Arm Kleidi 技術(shù),Arm 正在努力優(yōu)化 PyTorch,以加速在基于 Arm 架構(gòu)的處理器上運行 LLM 的性能。Arm 通過將 Kle
    的頭像 發(fā)表于 12-03 17:05 ?1921次閱讀
    Arm KleidiAI助力提升<b class='flag-5'>PyTorch</b>上LLM推理性能

    PyTorch 2.5.1: Bugs修復(fù)版發(fā)布

    ? 一,前言 在深度學(xué)習(xí)框架的不斷迭代中,PyTorch 社區(qū)始終致力于提供更穩(wěn)定、更高效的工具。最近,PyTorch 2.5.1 版本正式發(fā)布,這個版本主要針對 2.5.0 中發(fā)現(xiàn)的
    的頭像 發(fā)表于 12-03 16:11 ?1939次閱讀
    <b class='flag-5'>PyTorch</b> 2.5.1: Bugs修復(fù)版發(fā)布