chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

通過GPU加速機器學(xué)習(xí)

電子設(shè)計 ? 來源:電子設(shè)計 ? 作者:電子設(shè)計 ? 2022-02-10 17:00 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

早期的機器學(xué)習(xí)以搜索為基礎(chǔ),主要依靠進行過一定優(yōu)化的暴力方法。但是隨著機器學(xué)習(xí)逐漸成熟,它開始專注于加速技術(shù)已經(jīng)很成熟的統(tǒng)計方法和優(yōu)化問題。同時深度學(xué)習(xí)的問世更是帶來原本可能無法實現(xiàn)的優(yōu)化方法。本文將介紹現(xiàn)代機器學(xué)習(xí)如何找到兼顧規(guī)模和速度的新方法。

AI領(lǐng)域的轉(zhuǎn)變

在本系列的第1部分中,我們探討了AI的一些歷史,以及從Lisp到現(xiàn)代編程語言以及深度學(xué)習(xí)等新型計算智能范式的歷程。我們還討論了人工智能的早期應(yīng)用,它們依賴于經(jīng)過優(yōu)化的搜索形式、在海量數(shù)據(jù)集上進行訓(xùn)練的現(xiàn)代神經(jīng)網(wǎng)絡(luò)架構(gòu),同時解決了十年前還被認為不可能的難題。然而目前仍有兩大難題有待解決,即:如何進一步加速這些應(yīng)用,以及將它們限制在智能手機這樣的功耗優(yōu)化環(huán)境中。

今天,深度學(xué)習(xí)成為了多數(shù)加速技術(shù)的重點研究對象。深度學(xué)習(xí)是一種神經(jīng)網(wǎng)絡(luò)架構(gòu),它依賴于多層神經(jīng)網(wǎng)絡(luò),其中的每一層都可以支持不同的功能以進行特征檢測。這些深層神經(jīng)網(wǎng)絡(luò)依賴于可方便運用并行計算的矢量運算, 并為神經(jīng)網(wǎng)絡(luò)層分布式計算以及同層諸多神經(jīng)元并行計算創(chuàng)造了條件。

通過GPU加速機器學(xué)習(xí)

圖形處理單元(GPU)最初并不是用于加速深度學(xué)習(xí)應(yīng)用。GPU是一種特殊的設(shè)備,用于加速輸出到顯示設(shè)備的幀緩沖區(qū)(內(nèi)存)的構(gòu)建。它將渲染后的圖像存入幀緩沖區(qū),而不是依靠處理器來完成。GPU由數(shù)以千計的獨立內(nèi)核組成,它們并行運行并執(zhí)行矢量運算等特定類型的計算。盡管最初GPU專為視頻應(yīng)用而設(shè)計,但人們發(fā)現(xiàn)它們也可以加速矩陣乘法等科學(xué)計算。

開發(fā)人員既可以借助于GPU供應(yīng)商提供的API將GPU處理功能集成到應(yīng)用中,也可以采用適用于諸多不同環(huán)境的標準軟件包方式。R編程語言和編程環(huán)境包含與GPU協(xié)同工作來加快處理速度的軟件包,例如gputools、gmatrix和gpuR。GPU也可以通過numba軟件包或Theano等各種庫借助于Python進行編程。

通過這些軟件包,任何有意將GPU加速應(yīng)用于機器學(xué)習(xí)的人都可以達成愿望。但是工程師們還在研究更專門的方法。2019年,英特爾?以20億美元的價格收購了Habana Labs, 一家致力于為服務(wù)器中的機器學(xué)習(xí)加速器開發(fā)定制芯片的公司。此外,英特爾還于2017年以150億美元收購了自動駕駛芯片技術(shù)企業(yè)Mobileye。

定制芯片和指令

除了服務(wù)器和臺式機中的GPU加速之外,用于機器學(xué)習(xí)的加速器正在試圖超越傳統(tǒng)平臺,進軍功耗受限的嵌入式設(shè)備和智能手機。這些加速器形式多樣,包括U盤、API、智能手機神經(jīng)網(wǎng)絡(luò)加速器以及用于深度學(xué)習(xí)加速的矢量指令等。

適用于智能手機的深度學(xué)習(xí)

深度學(xué)習(xí)工具包已經(jīng)從PC端延伸到智能手機,可為存在更多限制的網(wǎng)絡(luò)提供支持。TensorFlow Lite和Core ML等框架已經(jīng)部署在用于機器學(xué)習(xí)應(yīng)用的移動設(shè)備上。Apple?最近發(fā)布了A12 Bionic芯片,這款芯片包括一個8核神經(jīng)網(wǎng)絡(luò)引擎,用于開發(fā)更加節(jié)能的神經(jīng)網(wǎng)絡(luò)應(yīng)用, 從而擴展Apple智能手機上的深度學(xué)習(xí)應(yīng)用。

Google發(fā)布了適用于Android? 8.1并具有機器學(xué)習(xí)功能的神經(jīng)網(wǎng)絡(luò)API (NNAPI), 目前已應(yīng)用于Google Lens自然語言處理和圖像識別背景下的Google Assistant。NNAPI與其他深度學(xué)習(xí)工具包相似,但它是針對Android智能手機環(huán)境及其資源限制而構(gòu)建的。

深度學(xué)習(xí)USB

英特爾發(fā)布了其新版神經(jīng)計算棒,以U盤的形式加速深度學(xué)習(xí)應(yīng)用。TensorFlow、Caffe和PyTorch等眾多機器學(xué)習(xí)框架都可以使用它。當沒有GPU可用時,這將是一個不錯的選擇,同時還可以快速構(gòu)建深度學(xué)習(xí)應(yīng)用原型。

深度學(xué)習(xí)指令

最后,在機器學(xué)習(xí)計算從CPU轉(zhuǎn)移到GPU的同時,英特爾使用新的指令優(yōu)化了其Xeon指令集,來加速深度學(xué)習(xí)。這些被稱為AVX-512擴展的新指令(所謂的矢量神經(jīng)網(wǎng)絡(luò)指令或VNNi)提高了卷積神經(jīng)網(wǎng)絡(luò)運算的處理量。

總結(jié)

GPU在機器學(xué)習(xí)中的應(yīng)用實現(xiàn)了在眾多應(yīng)用中構(gòu)建和部署大規(guī)模深度神經(jīng)網(wǎng)絡(luò)的能力。機器學(xué)習(xí)框架使構(gòu)建深度學(xué)習(xí)應(yīng)用變得簡單。智能手機供應(yīng)商也不甘人后,為受到諸多限制的應(yīng)用集成了高能效的神經(jīng)網(wǎng)絡(luò)加速器(以及用于定制應(yīng)用的API現(xiàn)在市面上還有其他可轉(zhuǎn)移到USB硬件上的加速器,許多新的初創(chuàng)公司也在加大加速器領(lǐng)域的投入,為未來機器學(xué)習(xí)應(yīng)用做準備。

審核編輯:何安

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    5099

    瀏覽量

    134471
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    FPGA和GPU加速的視覺SLAM系統(tǒng)中特征檢測器研究

    特征檢測是SLAM系統(tǒng)中常見但耗時的模塊,隨著SLAM技術(shù)日益廣泛應(yīng)用于無人機等功耗受限平臺,其效率優(yōu)化尤為重要。本文首次針對視覺SLAM流程開展硬件加速特征檢測器的對比研究,通過對比現(xiàn)代SoC平臺
    的頭像 發(fā)表于 10-31 09:30 ?302次閱讀
    FPGA和<b class='flag-5'>GPU</b><b class='flag-5'>加速</b>的視覺SLAM系統(tǒng)中特征檢測器研究

    Imagination GPU 驅(qū)動更新:新增多項 Vulkan 與 OpenCL 擴展支持

    整理了本次更新的重點內(nèi)容。Vulkan協(xié)作矩陣(CooperativeMatrix)支持為加速圖形后處理、神經(jīng)著色器、物理仿真以及GPU上的機器學(xué)習(xí)推理,DDK25
    的頭像 發(fā)表于 10-13 09:21 ?559次閱讀
    Imagination <b class='flag-5'>GPU</b> 驅(qū)動更新:新增多項 Vulkan 與 OpenCL 擴展支持

    FPGA在機器學(xué)習(xí)中的具體應(yīng)用

    隨著機器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場可編程門陣列)作為一種靈活且高效的硬件
    的頭像 發(fā)表于 07-16 15:34 ?2636次閱讀

    通過NVIDIA Cosmos模型增強機器人學(xué)習(xí)

    通用機器人的時代已經(jīng)到來,這得益于機械電子技術(shù)和機器人 AI 基礎(chǔ)模型的進步。但目前機器人技術(shù)的發(fā)展仍面臨一個關(guān)鍵挑戰(zhàn):機器人需要大量的訓(xùn)練數(shù)據(jù)來掌握諸如組裝和檢查之類的技能,而手動演
    的頭像 發(fā)表于 07-14 11:49 ?764次閱讀
    <b class='flag-5'>通過</b>NVIDIA Cosmos模型增強<b class='flag-5'>機器人學(xué)習(xí)</b>

    從圖形處理到AI加速,一文看懂Imagination D系列GPU

    Imagination的D系列于2022年首次發(fā)布,見證了生成式AI從云端到智能手機等消費設(shè)備中普及。在云端,由于GPU的可編程性、可擴展性和快速處理AI工作負載的能力,GPU已成為高效的AI加速
    的頭像 發(fā)表于 02-27 08:33 ?827次閱讀
    從圖形處理到AI<b class='flag-5'>加速</b>,一文看懂Imagination D系列<b class='flag-5'>GPU</b>

    GPU加速計算平臺的優(yōu)勢

    傳統(tǒng)的CPU雖然在日常計算任務(wù)中表現(xiàn)出色,但在面對大規(guī)模并行計算需求時,其性能往往捉襟見肘。而GPU加速計算平臺憑借其獨特的優(yōu)勢,吸引了行業(yè)內(nèi)人士的廣泛關(guān)注和應(yīng)用。下面,AI部落小編為大家分享GPU
    的頭像 發(fā)表于 02-23 16:16 ?758次閱讀

    GPU 加速計算:突破傳統(tǒng)算力瓶頸的利刃

    在數(shù)字化時代,數(shù)據(jù)呈爆炸式增長,傳統(tǒng)的算力已難以滿足復(fù)雜計算任務(wù)的需求。無論是人工智能的深度學(xué)習(xí)、大數(shù)據(jù)的分析處理,還是科學(xué)研究中的模擬計算,都對算力提出了極高的要求。而云 GPU 加速計算的出現(xiàn)
    的頭像 發(fā)表于 02-17 10:36 ?520次閱讀

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機器
    的頭像 發(fā)表于 12-30 09:16 ?1982次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    GPU加速云服務(wù)器怎么用的

    GPU加速云服務(wù)器是將GPU硬件與云計算服務(wù)相結(jié)合,通過云服務(wù)提供商的平臺,用戶可以根據(jù)需求靈活租用帶有GPU資源的虛擬機實例。那么,
    的頭像 發(fā)表于 12-26 11:58 ?853次閱讀

    如何選擇云原生機器學(xué)習(xí)平臺

    當今,云原生機器學(xué)習(xí)平臺因其彈性擴展、高效部署、低成本運營等優(yōu)勢,逐漸成為企業(yè)構(gòu)建和部署機器學(xué)習(xí)應(yīng)用的首選。然而,市場上的云原生機器
    的頭像 發(fā)表于 12-25 11:54 ?700次閱讀

    Triton編譯器在機器學(xué)習(xí)中的應(yīng)用

    多種深度學(xué)習(xí)框架,如TensorFlow、PyTorch、ONNX等,使得開發(fā)者能夠輕松地將不同框架下訓(xùn)練的模型部署到GPU上。 2. Triton編譯器的工作原理 Triton編譯器通過以下幾個步驟
    的頭像 發(fā)表于 12-24 18:13 ?1630次閱讀

    zeta在機器學(xué)習(xí)中的應(yīng)用 zeta的優(yōu)缺點分析

    的應(yīng)用(基于低功耗廣域物聯(lián)網(wǎng)技術(shù)ZETA) ZETA作為一種低功耗廣域物聯(lián)網(wǎng)(LPWAN)技術(shù),雖然其直接應(yīng)用于機器學(xué)習(xí)的場景可能并不常見,但它可以通過提供高效、穩(wěn)定的物聯(lián)網(wǎng)通信支持,間接促進
    的頭像 發(fā)表于 12-20 09:11 ?1627次閱讀

    《CST Studio Suite 2024 GPU加速計算指南》

    許可證模型的加速令牌或SIMULIA統(tǒng)一許可證模型的SimUnit令牌或積分授權(quán)。 4. GPU計算的啟用 - 交互式模擬:通過加速對話框啟用,打開求解器對話框,點擊“
    發(fā)表于 12-16 14:25

    深度學(xué)習(xí)工作負載中GPU與LPU的主要差異

    當前,生成式AI模型的參數(shù)規(guī)模已躍升至數(shù)十億乃至數(shù)萬億之巨,遠遠超出了傳統(tǒng)CPU的處理范疇。在此背景下,GPU憑借其出色的并行處理能力,已成為人工智能加速領(lǐng)域的中流砥柱。然而,就在GPU備受關(guān)注之時
    的頭像 發(fā)表于 12-09 11:01 ?3914次閱讀
    深度<b class='flag-5'>學(xué)習(xí)</b>工作負載中<b class='flag-5'>GPU</b>與LPU的主要差異