chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

深度學習算法和應用涌現(xiàn)的背后,是各種各樣的深度學習工具和框架

傳感器技術(shù) ? 來源:傳感器技術(shù) ? 作者:傳感器技術(shù) ? 2021-01-21 13:46 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

新一代人工智能技術(shù)的發(fā)展,離不開芯片與深度學習框架兩大基礎,隨著中國科研創(chuàng)新能力的提升,技術(shù)領域取得大量突破。

當然,這也是一種技術(shù)封鎖的倒逼,今年出現(xiàn)的華為芯片供應鏈被全面封鎖,和工科神器MATLAB被禁事件,這兩件事情加起來,迫使我國要從基礎架構(gòu)平臺到應用系統(tǒng)等,全方位建設自主知識的優(yōu)秀產(chǎn)品。

01

發(fā) 展

而深度學習作為人工智能的核心技術(shù),近年來無論是學術(shù)、還是工業(yè)領域,均發(fā)揮著愈加重要的作用。

過去十年,深度學習領域涌現(xiàn)了大量算法和應用。在這些深度學習算法和應用涌現(xiàn)的背后,是各種各樣的深度學習工具和框架。它們是機器學習革命的腳手架:TensorFlow 和 PyTorch 等深度學習框架的廣泛使用,使得許多 ML 從業(yè)者能夠使用適合的領域特定的編程語言和豐富的構(gòu)建模塊更容易地組裝模型。

回顧深度學習框架的演變,我們可以清楚地看到深度學習框架和深度學習算法之間的緊密耦合關系。這種相互依賴的良性循環(huán)推動了深度學習框架和工具的快速發(fā)展。

02

趨 勢

我們正在處于一場人工智能革命的黎明,人工智能領域的新研究和應用框架,正在以前所未有的速度涌現(xiàn)。

八年前的AlexNet 網(wǎng)絡僅僅包含6000 萬個參數(shù),最新的 GPT-3 網(wǎng)絡包含 1750 億參數(shù),網(wǎng)絡規(guī)模在 8 年內(nèi)增加了 3000 倍。但是人類的大腦包含100萬億個突觸,也就相當于參數(shù)。所以,神經(jīng)網(wǎng)絡要達到人類的智能水平還有很大的差距。

這種難以接受的網(wǎng)絡規(guī)模,對現(xiàn)有的模型訓練和推理的硬件、軟件計算效率都提出了很大的挑戰(zhàn)。未來的深度學習框架很可能是算法、高性能計算、硬件加速器和分布式系統(tǒng)的跨學科成果。

03

挑 戰(zhàn)

然而,對于深度學習相關的初學者,還是對于已經(jīng)從事相關工作的算法工程師來說,深度學習理論太難學,開發(fā)過程太復雜,又將許多人拒之于深度學習的門外。

而大廠等一線企業(yè)在這方面的需求也是迫在眉睫,阿里云也正式開深,是業(yè)界首個面向NLP場景的深度遷移學習框架。人才渴求之大,人才缺口一場嚴峻。

04

機 遇

那么,作為我們學習深度學習的時候,究竟是學哪個框架呢?是學PyTorch、還是學Tensorflow、再或者是學Keras呢?其實,對于這樣的問題,基于現(xiàn)在的形勢下,你就不要把著眼點放在這些工具的使用上了,重要的是要知道它的原理。

責任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4710

    瀏覽量

    95409
  • 源碼
    +關注

    關注

    8

    文章

    671

    瀏覽量

    30349
  • 深度學習
    +關注

    關注

    73

    文章

    5561

    瀏覽量

    122805

原文標題:與其瘋狂讀源碼,不如自己造源碼!

文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術(shù)】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    嵌入式AI技術(shù)之深度學習:數(shù)據(jù)樣本預處理過程中使用合適的特征變換對深度學習的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡實現(xiàn)機器學習,網(wǎng)絡的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡構(gòu)成深度學習框架,可以深度理解數(shù)
    的頭像 發(fā)表于 04-02 18:21 ?890次閱讀

    在OpenVINO?工具套件的深度學習工作臺中無法導出INT8模型怎么解決?

    無法在 OpenVINO? 工具套件的深度學習 (DL) 工作臺中導出 INT8 模型
    發(fā)表于 03-06 07:54

    軍事應用中深度學習的挑戰(zhàn)與機遇

    人工智能尤其是深度學習技術(shù)的最新進展,加速了不同應用領域的創(chuàng)新與發(fā)展。深度學習技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?540次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關系

    ),是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡權(quán)重,目的是最小化網(wǎng)絡的輸出誤差。 二、深度學習的定義與發(fā)展
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    NPU與機器學習算法的關系

    在人工智能領域,機器學習算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習
    的頭像 發(fā)表于 11-15 09:19 ?1229次閱讀

    NPU在深度學習中的應用

    設計的硬件加速器,它在深度學習中的應用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對深度學習算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和G
    的頭像 發(fā)表于 11-14 15:17 ?1922次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?661次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?1384次閱讀

    激光雷達技術(shù)的基于深度學習的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領域具有廣泛的應用前景。 二、深度學習技術(shù)的發(fā)展 深度學習是機器學習的一個分支,它通過模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1072次閱讀

    FPGA加速深度學習模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPGA的AlexNet卷積運算加速 項目名稱
    的頭像 發(fā)表于 10-25 09:22 ?1238次閱讀

    AI大模型與深度學習的關系

    人類的學習過程,實現(xiàn)對復雜數(shù)據(jù)的學習和識別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計算資源來進行訓練和推理。深度學習算法為AI大模型
    的頭像 發(fā)表于 10-23 15:25 ?2900次閱讀

    深度學習GPU加速效果如何

    圖形處理器(GPU)憑借其強大的并行計算能力,成為加速深度學習任務的理想選擇。
    的頭像 發(fā)表于 10-17 10:07 ?617次閱讀

    FPGA做深度學習能走多遠?

    的發(fā)展前景較為廣闊,但也面臨一些挑戰(zhàn)。以下是一些關于 FPGA 在深度學習中應用前景的觀點,僅供參考: ? 優(yōu)勢方面: ? 高度定制化的計算架構(gòu):FPGA 可以根據(jù)深度學習
    發(fā)表于 09-27 20:53

    深度識別算法包括哪些內(nèi)容

    深度識別算法深度學習領域的一個重要組成部分,它利用深度神經(jīng)網(wǎng)絡模型對輸入數(shù)據(jù)進行高層次的理解和識別。
    的頭像 發(fā)表于 09-10 15:28 ?844次閱讀

    NVIDIA推出全新深度學習框架fVDB

    在 SIGGRAPH 上推出的全新深度學習框架可用于打造自動駕駛汽車、氣候科學和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?1152次閱讀