chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

單片機內置ADC實現(xiàn)高分辨率采樣

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2022-02-09 14:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

相信ADC的應用或多或少都會用到,在很多場合都有分辨率要求,要實現(xiàn)較高分辨率時,第一時間會想到采用一個較高位數(shù)的外置ADC去實現(xiàn)??墒歉叻直媛释庵肁DC往往價格都不便宜,這就帶來一對矛盾:高指標與低成本。其實利用單片機片上的ADC利用過采樣技術就能很好的解決這樣一對矛盾體,本文來聊聊這個話題。

什么是過采樣?

信號處理中,過采樣是指以明顯高于奈奎斯特速率的采樣頻率對信號進行采樣。從理論上講,如果以奈奎斯特速率或更高的速率進行采樣,則可以完美地重建帶寬受限的信號。奈奎斯特頻率定義為信號帶寬的兩倍。過采樣能夠提高分辨率和信噪比SNR,并且通過放寬抗混疊濾波器的性能要求,有助于避免混疊和相位失真。

在很多項目應用中,需要測量信號的動態(tài)范圍較大,且需要參數(shù)的微小變化。例如,ADC需要測量很大的溫度范圍(比如工業(yè)中甚至要求從-200℃~500℃),但仍要求系統(tǒng)對小于1度的變化做出響應。常見的單片機片上ADC位數(shù)為12位,如要實現(xiàn)高于12位分辨率要怎么做呢?我們知道奈奎斯特-香農采樣定理可知:

pIYBAGAJPBqAABayAAADZWxN_1w613.png

其中:

o4YBAGAJPFeAGGywAAABmqq40iE655.png為輸入待采樣信號最高頻率

o4YBAGAJPJWAKlEmAAABe7D1y78217.png為奈奎斯特頻率。

如果實際采樣頻率高于奈奎斯特頻率pIYBAGAJPNKAdU5ZAAABeoM24C0724.png,即為過采樣。那么低于奈奎斯特采樣頻率進行采樣就稱為欠采樣,如下圖:

o4YBAGAJPVKAHDg6AAETon94mTY993.png

或許你會問,常規(guī)的應用都是過采樣,怎么也沒見分辨率提高了呀?如果僅僅過采樣,要實現(xiàn)更高分辨率顯然是不夠的,那么要怎么利用過采樣實現(xiàn)更高的分辨率呢?要知道所采用的ADC硬件核分辨率是固定的,難道還會變不成?
過采樣提高分辨率

如果對一模擬信號,采用過采樣,然后再進行一定的軟件后處理,理論上是可以得到更高分辨率的:

為增加有效位數(shù)(ENOB :effective number of bits),對信號進行過采樣,所需的過采樣率可以由下面公式確定(省略理論推導,過于枯燥):

pIYBAGAJPdCAcHoyAAADqV1TCxM137.png

其中:

pIYBAGAJPg6AEOREAAABtF_ObHI509.png為過采樣頻率

o4YBAGAJPkuACjuMAAABd3vL8nE094.png產品所需實際采樣頻率

W為額外所需增加的分辨率位數(shù)

假設系統(tǒng)使用12位ADC每100 ms輸出一次采樣值也即(10 Hz)。為了將測量的分辨率提高到16位,我們按上述公式計算過采樣頻率:

100054663-108159-10.png

因此,如果我們以100054663-108160-11.png對信號進行過采樣,然后在所需的采樣周期內收集足夠的樣本以對它們進行平均,現(xiàn)在可以將16位輸出數(shù)據(jù)用于16位測量。

具體怎么做呢?

首先將256個連續(xù)采樣累加

然后將總數(shù)除以16(或將總數(shù)右移4位)。該過程通常稱為抽取,也即將速率采樣。

在類似進行下一次16位樣本處理

注意:用于累積過采樣數(shù)據(jù)并執(zhí)行除法抽取數(shù)據(jù)類型必須具有足夠的字節(jié)寬度,以防止溢出和截斷錯誤。比如這里累積和可以采樣32位無符號整型。

由上面公式可得出一個重要結論:每提高W位分辨率,需要提高采樣率4W倍。

過采樣提高ADC的信噪比

ADC測量的SNR理論極限基于量化噪聲,這是基于在沒有過采樣和平滑濾波情況下模數(shù)轉換過程中固有的量化誤差所致。而量化誤差取決于ADC分辨率的位數(shù),其中N為ADC的位數(shù),Vref為參考電壓。

100054663-108161-12.png

SNR理論情況下極限值的計算方式是數(shù)據(jù)轉換的有效位數(shù),如下所示:

100054663-108162-13.png

這個公式沒必要去記,用到的時候參考計算一下即可。從公式中可看出,要提升一個模數(shù)轉換器的理論SNR的一種可行方案可以通過提升采樣位數(shù),但是需要注意的是這里的信噪比是度量模數(shù)轉換器本身的,就一個真實系統(tǒng)的信噪比還與整個信號鏈相關!

從上式中不難算出,12位ADC的理論SNR極限值為74dB,而通過過采樣提升4位分辨率后,其SNR理論極限提高至96 dB!

到底怎么實現(xiàn)呢?

這里以偽代碼的方式給出編程思路:

void init_adc(void) { /*配置ADC的采樣率為過采樣率連續(xù)中斷模式*/ } void start_adc(void) { /*控制ADC啟動采樣*/ } /*不同的開發(fā)平臺中斷函數(shù)寫法略有差異,比如51需要指定向量 */ /*OVERSAMPLE_FACTOR=4^RSHIFT_BITS 下面兩個宏一起修改 */ #define RSHIFT_BITS (4) #define OVERSAMPLE_FACTOR (256) static unsigned short adc_result=0U; void adc_isr(void) { static unsigned short adc_index = OVERSAMPLE_FACTOR; static unsigned int accumulator = 0U; /*ADC_REG ADC轉換結果寄存器,不同平臺名稱不同*/ accumulator += ADC_REG; adc_index--; if( adc_index==0 ) { /* 加和按因子抽取 */ adc_result = accumulator>>RSHIFT_BITS; accumulator = 0; adc_index = OVERSAMPLE_FACTOR; } }

該方案有一個缺陷,就是每次ADC中斷都需要CPU參與,在過采樣率很高的情況下,上述方案消耗很多CPU資源,那么如果單片機內存資源足夠的情況下可以考慮采用DMA模式,采集很多數(shù)據(jù)并將數(shù)據(jù)暫存下來,然后再做累加平均抽取。這是空間換時間的策略的體現(xiàn)。這個編代碼也很容易,只需要申請一片內存區(qū),內存區(qū)的大小可以定為256的倍數(shù),這是因為在提升4位分辨率情況下,一個16位的輸出樣本需要256個12位樣本。

總結一下

在成本受限的情況下,可以通過單片機片內ADC過采樣以及累積抽取的技術來提升采樣分辨率,這種技術的特點:

可以使用過采樣和平均來提高測量分辨率,而無需增加昂貴的片外ADC。

過采樣和加和抽取將以提高CPU利用率和降低吞吐量為代價來提高SNR和測量分辨率。

過采樣和加和抽取可以改善白噪聲的信噪比。

本文轉載自:嵌入式客棧微信公眾號(作者: 逸珺)

審核編輯:何安

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 單片機
    +關注

    關注

    6074

    文章

    45321

    瀏覽量

    662962
  • adc
    adc
    +關注

    關注

    100

    文章

    7319

    瀏覽量

    553618
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    分辨率對于模擬到數(shù)字轉換器有什么重要性

    )、航空航天(導航、遙測)等。5. 與其他參數(shù)的協(xié)同作用采樣率高分辨率ADC通常需要更長的轉換時間,可能限制采樣率。因此,在高速應用中需權衡分辨率
    發(fā)表于 09-18 09:31

    極細同軸線束是如何提升高分辨率成像的穩(wěn)定性與清晰度的?

    極細同軸線束憑借高速傳輸、抗干擾、柔性和小型化等優(yōu)勢,已經成為高分辨率成像系統(tǒng)不可或缺的基礎。它不僅支撐了醫(yī)療診斷的精確性,也推動了工業(yè)與消費電子成像設備的不斷進步??梢哉f,高分辨率影像背后,正有極細同軸線束在默默發(fā)揮著關鍵作用。
    的頭像 發(fā)表于 09-01 14:20 ?503次閱讀
    極細同軸線束是如何提升<b class='flag-5'>高分辨率</b>成像的穩(wěn)定性與清晰度的?

    聚徽廠家工業(yè)液晶屏的高分辨率成像技術揭秘

    在工業(yè)生產、智能控制、精密檢測等領域,對信息的精準獲取與清晰展示至關重要。聚徽廠家的工業(yè)液晶屏憑借卓越的高分辨率成像技術,在眾多品牌中脫穎而出,為各行業(yè)提供了清晰、細膩的視覺呈現(xiàn)。接下來,將深入探究聚徽工業(yè)液晶屏高分辨率成像技術背后的奧秘。
    的頭像 發(fā)表于 07-11 18:08 ?595次閱讀

    分辨率 vs 噪聲 —— ADC的挑戰(zhàn)

    設計者常用高分辨率 ADC 以降低最低可量測單位(LSB),提高檢測精度。 比如一個 16 位 ADC 在 5V 范圍內, LSB ≈ 76 μV ;理想情況下可以檢測到微弱電信號。 問題是: 若
    的頭像 發(fā)表于 06-23 07:38 ?1449次閱讀
    <b class='flag-5'>分辨率</b> vs 噪聲 —— <b class='flag-5'>ADC</b>的挑戰(zhàn)

    LT8722如何實現(xiàn)高分辨率的脈沖?

    resolution should be 333/2^(24)=0.00002 ns. 如何實現(xiàn)如此高分辨率的脈沖? PWM 是否由模擬比較器產生?芯片中是否有真正的 DAC 來產生比較器電壓? What
    發(fā)表于 04-28 06:08

    普源精電RIGOL推出MHO2000系列高分辨率示波器

    MHO2000系列的技術創(chuàng)新、市場定位、行業(yè)影響,并探討其對電子測量儀器行業(yè)未來發(fā)展的深遠意義。 一、技術革新:突破性參數(shù)與核心架構 1. 高分辨率技術的突破 MHO2000系列采用普源精電自主研發(fā)的高分辨率垂直系統(tǒng)(HRVS),通過優(yōu)化
    的頭像 發(fā)表于 03-31 13:24 ?856次閱讀
    普源精電RIGOL推出MHO2000系列<b class='flag-5'>高分辨率</b>示波器

    普源精電RIGOL推出MHO2000系列高分辨率數(shù)字示波器 內置函數(shù)發(fā)生器

    新品發(fā)布 普源精電MHO2000系列高分辨率數(shù)字示波器 是一款 性能可靠的經濟型高分辨率混合信號數(shù)字示波器 ,最高可達350MHz模擬帶寬,擁有12bit ADC,并集協(xié)議分析儀,邏輯分析儀,信號
    的頭像 發(fā)表于 03-31 10:51 ?1232次閱讀
    普源精電RIGOL推出MHO2000系列<b class='flag-5'>高分辨率</b>數(shù)字示波器 <b class='flag-5'>內置</b>函數(shù)發(fā)生器

    國產高分辨率AFE替換ADS1283/ADS1284應用于高精度儀器

    國產高分辨率AFE替換ADS1283/ADS1284應用于高精度儀器
    的頭像 發(fā)表于 03-04 10:00 ?864次閱讀
    國產<b class='flag-5'>高分辨率</b>AFE替換ADS1283/ADS1284應用于高精度儀器

    高分辨率示波器的功能與作用:以麥科信MHO6為例

    一、高分辨率示波器的定義與重要性 高分辨率示波器是一種能夠以高精度捕捉和分析信號的電子測量儀器,它通過增加垂直分辨率(通常為12bit或更高)和采樣率,能夠更清晰地顯示信號的細節(jié),從而
    發(fā)表于 02-28 17:39

    高速、高分辨率、大面積成像應用的理想選擇——Falcon4-CLHS工業(yè)相機

    在機器視覺高性能成像應用領域,TeledyneDalsa的Falcon4-CLHS工業(yè)相機系列無疑是理想之選。它運用了TeledyneImaging的先進CMOS架構,為大面積、高分辨率、高速
    的頭像 發(fā)表于 02-21 17:05 ?1224次閱讀
    高速、<b class='flag-5'>高分辨率</b>、大面積成像應用的理想選擇——Falcon4-CLHS工業(yè)相機

    如何通過過采樣提高ADC分辨率?

    通過過采樣提高ADC分辨率
    發(fā)表于 02-10 08:05

    GD32G5x3系列高分辨率定時器使用指南

    電子發(fā)燒友網站提供《GD32G5x3系列高分辨率定時器使用指南.pdf》資料免費下載
    發(fā)表于 01-22 17:32 ?1次下載
    GD32G5x3系列<b class='flag-5'>高分辨率</b>定時器使用指南

    大視野與高分辨率難兼得,F(xiàn)A 鏡頭有何破局之法?

    在電子制造、工業(yè)檢測等領域,機器視覺系統(tǒng)里的FA鏡頭發(fā)揮著關鍵作用。大視野可提高檢測效率,高分辨率能保障檢測精度,然而傳統(tǒng)光學設計和制造工藝卻讓這兩者難以同時實現(xiàn)。依據(jù)傳統(tǒng)光學原理,鏡頭視野與分辨率
    的頭像 發(fā)表于 01-21 16:49 ?1130次閱讀
    大視野與<b class='flag-5'>高分辨率</b>難兼得,F(xiàn)A 鏡頭有何破局之法?

    請問SAR ADC有效分辨率采樣率有關嗎?

    是不是所有的ADC都是采樣率越高、分辨率越差(跳動位數(shù)越多)? 我的實驗: ADS8556是16位SAR ADC,最高采樣率500多KhZ
    發(fā)表于 01-15 07:57

    24位或者說高分辨率的AD到底有什么用呢?

    的AD,如24位的AD,其分辨率達到很低的uV級別,我們如何考究其精度?而且AD的精度受到諸多因素的影響,其中參考源的穩(wěn)定度和供電電源的穩(wěn)定度對精度影響很大,參考源最低0.05%的精度,那么24位的分辨率所可以達到的精度卻是要大打折扣的,請問在這樣的情況下,24位或者說
    發(fā)表于 01-07 06:49