chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

模型集成是一種提升模型能力的常用方法

新機器視覺 ? 來源:AI公園 ? 作者:AI公園 ? 2021-01-27 11:31 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀

模型集成是一種提升模型能力的常用方法,但通常也會帶來推理時間的增加,在物體檢測上效果如何,可以看看。

8c5baf2e-6042-11eb-8b86-12bb97331649.png

介紹

集成機器學(xué)習(xí)模型是一種常見的提升模型能力的方式,并已在多個場景中使用,因為它們結(jié)合了多個模型的決策,以提高整體性能,但當(dāng)涉及到基于DNN(深度神經(jīng)網(wǎng)絡(luò))的目標(biāo)檢測模型時,它并不僅僅是合并結(jié)果那么簡單。

集成的需求

為了在任何模型中獲得良好的結(jié)果,都需要滿足某些標(biāo)準(zhǔn)(數(shù)據(jù)、超參數(shù))。但在真實場景中,你可能會得到糟糕的訓(xùn)練數(shù)據(jù),或者很難找到合適的超參數(shù)。在這些情況下,綜合多個性能較差的模型可以幫助你獲得所需的結(jié)果。在某種意義上,集成學(xué)習(xí)可以被認(rèn)為是一種通過執(zhí)行大量額外計算來彌補學(xué)習(xí)算法不足的方法。另一方面,另一種選擇是在一個非集成系統(tǒng)上做更多的學(xué)習(xí)。對于計算、存儲或通信資源的相同增加,集成系統(tǒng)使用兩種或兩種以上的方法可能會比使用單一方法增加資源的方法更有效地提高整體精度。

看起來挺好,有沒有缺點呢?

更難調(diào)試或理解預(yù)測,因為預(yù)測框是根據(jù)多個模型繪制的。

推理時間根據(jù)模型和使用的模型數(shù)量而增加。

嘗試不同的模型以獲得合適的模型集合是一件耗時的事情。

不同的模型集成

OR方法:如果一個框是由至少一個模型生成的,就會考慮它。

AND方法:如果所有模型產(chǎn)生相同的框,則認(rèn)為是一個框(如果IOU >0.5)。

一致性方法:如果大多數(shù)模型產(chǎn)生相同的框,則認(rèn)為是一個框,即如果有m個模型,(m/2 +1)個模型產(chǎn)生相同的框,則認(rèn)為這個框有效。

加權(quán)融合:這是一種替代NMS的新方法,并指出了其不足之處。

8f114b52-6042-11eb-8b86-12bb97331649.png

不同的集成方法

在上面的例子中,OR方法的預(yù)測得到了所有需要的對象框,但也得到了一個假陽性結(jié)果,一致性的方法漏掉了馬,AND方法同時漏掉了馬和狗。

驗證

為了計算不同的集成方法,我們將跟蹤以下參數(shù):

True positive:預(yù)測框與gt匹配

False Positives:預(yù)測框是錯誤的

False Negatives:沒有預(yù)測,但是存在gt。

Precision:度量你的預(yù)測有多準(zhǔn)確。也就是說,你的預(yù)測正確的百分比[TP/ (TP + FP)]

Recall:度量gt被預(yù)測的百分比[TP/ (TP + FN)]

Average Precision:precision-recall圖的曲線下面積

使用的模型

為了理解集成是如何起作用的,我們提供了用于實驗的獨立模型的結(jié)果。

1. YoloV3:

903377bc-6042-11eb-8b86-12bb97331649.png

2. Faster R-CNN — ResNeXt 101 [X101-FPN]:

90fec3a4-6042-11eb-8b86-12bb97331649.png

集成實驗

1. OR — [YoloV3, X101-FPN]

91b45714-6042-11eb-8b86-12bb97331649.png

如果你仔細(xì)觀察,F(xiàn)Ps的數(shù)量增加了,這反過來降低了精度。與此同時,TPs數(shù)量的增加反過來又增加了召回。這是使用OR方法時可以觀察到的一般趨勢。

2. AND — [YoloV3, X101-FPN]

91f8a054-6042-11eb-8b86-12bb97331649.png

與我們使用OR方法觀察到的情況相反,在AND方法中,我們最終獲得了較高的精度和較低的召回率,因為幾乎所有的假陽性都被刪除了,因為YoloV3和X101的大多數(shù)FPs是不同的。

檢測框加權(quán)融合

在NMS方法中,如果框的IoU大于某個閾值,則認(rèn)為框?qū)儆趩蝹€物體。因此,框的過濾過程取決于這個單一IoU閾值的選擇,這影響了模型的性能。然而,設(shè)置這個閾值很棘手:如果有多個物體并排存在,那么其中一個就會被刪除。NMS丟棄了冗余框,因此不能有效地從不同的模型中產(chǎn)生平均的局部預(yù)測。

9281237a-6042-11eb-8b86-12bb97331649.png

NMS和WBF之間的主要區(qū)別是,WBF利用所有的框,而不是丟棄它們。在上面的例子中,紅框是ground truth,藍(lán)框是多個模型做出的預(yù)測。請注意,NMS是如何刪除冗余框的,但WBF通過考慮所有預(yù)測框創(chuàng)建了一個全新的框(融合框)。

3. Weighted Boxes Fusion — [Yolov3, X101-FPN]

92b348f0-6042-11eb-8b86-12bb97331649.png

YoloV3和X101-FPN的權(quán)重比分別為2:1。我們也試著增加有利于X101-FPN的比重(因為它的性能更好),但在性能上沒有看到任何顯著的差異。從我們讀過的加權(quán)融合論文中,作者注意到了AP的增加,但如你所見,WBF YoloV3和X101-FPN并不比OR方法好很多。我們注意到的是,大部分的實驗涉及至少3個或更多模型。

4. Weighted Boxes Fusion — [Yolov3, X101, R101, R50]

93703e10-6042-11eb-8b86-12bb97331649.png

在最后的實驗中,我們使用了YoloV3以及我們在Detectron2中訓(xùn)練的3個模型[ResNeXt101-FPN, ResNet101-FPN, ResNet50-FPN]。顯然,召回率有一個跳躍(約為傳統(tǒng)方法的0.3),但AP的跳躍并不大。另外,需要注意的是,當(dāng)你向WF方法添加更多模型時,誤報的數(shù)量會激增。

總結(jié)

當(dāng)使用相互補充的模型時,集成是提高性能的一種很好的方法,但它也會以速度為代價來完成推理。根據(jù)需求,可以決定有多少個模型,采用哪種方法,等等。但從我們進(jìn)行的實驗來看,性能提升的數(shù)量似乎與一起運行這些模型所需的資源和推斷時間不成比例。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103640
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3521

    瀏覽量

    50431
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134631

原文標(biāo)題:目標(biāo)檢測多模型集成方法總結(jié)

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    模型推理顯存和計算量估計方法研究

    (如全連接層、卷積層等)確定所需的顯存大?。?(3)將各層顯存大小相加,得到模型總的顯存需求。 基于神經(jīng)網(wǎng)絡(luò)剪枝的顯存估計 神經(jīng)網(wǎng)絡(luò)剪枝是一種減少模型參數(shù)數(shù)量的技術(shù),可以降低顯存需求。通過剪枝,可以
    發(fā)表于 07-03 19:43

    FA模型訪問Stage模型DataShareExtensionAbility說明

    解決方案,讓開發(fā)者平滑過渡到API 9(含)之后的版本。 基本原理 一種兼容方法是DataAbilityHelper根據(jù)傳入的URI的前綴是DataAbility還是DataShare來決定是否調(diào)
    發(fā)表于 06-04 07:53

    KaihongOS操作系統(tǒng)FA模型與Stage模型介紹

    FA模型與Stage模型介紹 KaihongOS操作系統(tǒng)中,F(xiàn)A模型(Feature Ability)和Stage模型是兩不同的應(yīng)用
    發(fā)表于 04-24 07:27

    一種基于正交與縮放變換的大模型量化方法

    近年來,大規(guī)模語言模型(Large Language Models, LLMs)在自然語言處理領(lǐng)域取得了革命性進(jìn)展。以 GPT 系列、LLaMA 等為代表的模型,通過千億級參數(shù)的復(fù)雜結(jié)構(gòu)展現(xiàn)出強大的語義理解和生成能力。
    的頭像 發(fā)表于 03-04 11:10 ?484次閱讀
    <b class='flag-5'>一種</b>基于正交與縮放變換的大<b class='flag-5'>模型</b>量化<b class='flag-5'>方法</b>

    模型領(lǐng)域常用名詞解釋(近100個)

    的分類進(jìn)行了整理,以下供參考:模型架構(gòu)與基礎(chǔ)概念大語言模型(LLM,LargeLanguageModel):一種基于深度學(xué)習(xí)的大規(guī)模神經(jīng)網(wǎng)絡(luò)模型,通常采用Transf
    的頭像 發(fā)表于 02-19 11:49 ?790次閱讀
    大<b class='flag-5'>模型</b>領(lǐng)域<b class='flag-5'>常用</b>名詞解釋(近100個)

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗】+Embedding技術(shù)解讀

    理和理解這些數(shù)據(jù)。在自然語言處理中,Embedding常用于將文本數(shù)據(jù)中的單詞、句子或文檔映射為固定長度的實數(shù)向量,這些向量包含了豐富的語義信息。RAG技術(shù)是一種結(jié)合信息檢索與文本生成能力的技術(shù),它通過
    發(fā)表于 01-17 19:53

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗】+大模型微調(diào)技術(shù)解讀

    ,減少了計算成本。LoRA(Low-Rank Adaptation):一種基于低秩分解的微調(diào)方法,通過分解模型參數(shù)矩陣為低秩矩陣來減少參數(shù)更新的數(shù)量,提高訓(xùn)練效率。PET(Prompt-based
    發(fā)表于 01-14 16:51

    【「具身智能機器人系統(tǒng)」閱讀體驗】2.具身智能機器人大模型

    、醫(yī)療、服務(wù)等領(lǐng)域的應(yīng)用前景更加廣闊,也使得人類能夠更輕松地借助機器完成復(fù)雜工作。我深刻認(rèn)識到,大模型技術(shù)正在從根本上改變我們對機器人能力的認(rèn)知。它們不僅是一種技術(shù)工具,更是推動具身智能機器人發(fā)展的重要動力。
    發(fā)表于 12-29 23:04

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    的是百度的Picodet模型,它是一種基于深度卷積網(wǎng)絡(luò)(DNN)的輕量級目標(biāo)檢測模型,具有非常高的檢測精度,可以在低算力設(shè)備進(jìn)行實時的端到端推理檢測。 2.1 Picodet模型介紹
    發(fā)表于 12-19 14:33

    【「大模型啟示錄」閱讀體驗】如何在客服領(lǐng)域應(yīng)用大模型

    多個因素以確保所選模型能夠滿足企業(yè)的具體需求和目標(biāo)。首先,企業(yè)需要明確自己的客服需求和目標(biāo)。例如,是否需要24小時在線客服服務(wù)?是否需要處理復(fù)雜問題的能力?是否需要個性化服務(wù)?明確這些需求有助于企業(yè)更好
    發(fā)表于 12-17 16:53

    卡諾模型為人工智能領(lǐng)域提供了一種全新的視角

    在探索人工智能如何更深層次滿足用戶需求、提升用戶體驗的旅程中,卡諾模型(Kano Model)提供了個極具價值的理論框架。這模型不僅為產(chǎn)
    的頭像 發(fā)表于 12-11 10:17 ?656次閱讀

    如何提升ASR模型的準(zhǔn)確性

    提升ASR(Automatic Speech Recognition,自動語音識別)模型的準(zhǔn)確性是語音識別技術(shù)領(lǐng)域的核心挑戰(zhàn)之。以下是提升
    的頭像 發(fā)表于 11-18 15:14 ?2346次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度學(xué)習(xí)是一種機器學(xué)習(xí)的
    的頭像 發(fā)表于 10-23 15:25 ?2898次閱讀

    接口芯片的編程模型方法是什么

    接口芯片的編程模型方法個復(fù)雜的話題,涉及到硬件設(shè)計、軟件編程、通信協(xié)議等多個方面。 1. 接口芯片概述 接口芯片是用來連接不同硬件設(shè)備或系統(tǒng)的一種
    的頭像 發(fā)表于 09-30 11:30 ?652次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)知識學(xué)習(xí)

    習(xí)語言的表達(dá)方式和生成能力。通過預(yù)測文本中缺失的部分或下個詞,模型逐漸掌握語言的規(guī)律和特征。 常用模型結(jié)構(gòu) Transformer架構(gòu)
    發(fā)表于 08-02 11:03