想要適應(yīng)自動駕駛、控制機器人、醫(yī)療診斷等場景,就必須讓神經(jīng)網(wǎng)絡(luò)適應(yīng)快速變化的各種狀況。好消息是,麻省理工(MIT)計算機科學(xué)與人工智能實驗室(CSAIL)的 Ramin Hasani 團隊,已經(jīng)設(shè)計出了一種具有重大改進的“液態(tài)”神經(jīng)網(wǎng)絡(luò)。其特點是能夠在投入訓(xùn)練階段之后,極大地擴展 AI 技術(shù)的靈活性。
通常情況下,研究人員會在訓(xùn)練階段向神經(jīng)網(wǎng)絡(luò)算法提供大量相關(guān)的目標數(shù)據(jù),來磨煉其推理能力。
期間通過對正確的響應(yīng)加以獎勵,以優(yōu)化其性能。然而傳統(tǒng)的訓(xùn)練方案,明顯還是過于“刻板”了。
有鑒于此,Ramin Hasani 與團隊成員合作開發(fā)了一套新方法,讓神經(jīng)網(wǎng)絡(luò)可以像“液體”一樣,隨著時間的流逝而更好地適應(yīng)“正確”的新信息。
舉個例子,如果無人駕駛汽車上的感知神經(jīng)網(wǎng)絡(luò)能夠分辨晴朗的天空和大雪等環(huán)境,就可以更好地順應(yīng)情況的變化、并維持較高的性能。
這項新研究的主要特點,是側(cè)重于時間序列的適應(yīng)性。比之建立于訓(xùn)練數(shù)據(jù)的多快照或時間上的靜態(tài)時刻,可流動的液態(tài)神經(jīng)網(wǎng)絡(luò)可以將時間序列或圖像序列也考慮進來,而不是孤立的各個片段。
得益于這種系統(tǒng)設(shè)計方法,與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)相比,MIT 的液態(tài)系統(tǒng)實際上更便于開展觀察研究。
前一種 AI 通常被稱作‘黑盒’,盡管算法開發(fā)者明確知曉輸入信息的判定準則,但通常無法確定其中到底發(fā)生了什么。
而液態(tài)神經(jīng)網(wǎng)絡(luò)在這部分提升了透明度、對復(fù)雜計算節(jié)點的依賴性也更少,因此還具有相當(dāng)不錯的成本優(yōu)勢。
最終結(jié)果表明,在預(yù)測已知數(shù)據(jù)集的未來值方面,液態(tài)神經(jīng)網(wǎng)絡(luò)的準確性要顯著優(yōu)于其它替代方案。
下一步,Hasani 將與團隊成員繼續(xù)改進液態(tài)神經(jīng)網(wǎng)絡(luò)的性能表現(xiàn),并努力將之推向?qū)嶋H應(yīng)用。
責(zé)任編輯:PSY
-
神經(jīng)網(wǎng)絡(luò)
+關(guān)注
關(guān)注
42文章
4831瀏覽量
107275 -
數(shù)據(jù)
+關(guān)注
關(guān)注
8文章
7325瀏覽量
94303 -
自動駕駛
+關(guān)注
關(guān)注
792文章
14801瀏覽量
178347
發(fā)布評論請先 登錄
NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹
在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗
液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)
神經(jīng)網(wǎng)絡(luò)的并行計算與加速技術(shù)
無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究
神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機故障診斷中的應(yīng)用
神經(jīng)網(wǎng)絡(luò)RAS在異步電機轉(zhuǎn)速估計中的仿真研究
基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析
研究人員開發(fā)“液態(tài)”神經(jīng)網(wǎng)絡(luò) 可適應(yīng)快速變化的訓(xùn)練環(huán)境
評論