chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用戶畫像分析就是基于大量的數(shù)據(jù)

數(shù)據(jù)分析與開發(fā) ? 來源:數(shù)據(jù)分析與開發(fā) ? 作者:數(shù)據(jù)分析與開發(fā) ? 2021-03-12 15:24 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

01

寫在前面

我們經(jīng)常在淘寶上購物, 作為淘寶方,他們肯定想知道他的使用用戶是什么樣的, 是什么樣的年齡性別, 城市, 收入, 他的購物品牌偏好, 購物類型, 平時的活躍程度是什么樣的, 這樣的一個用戶描述就是用戶畫像分析

無論是產(chǎn)品策劃還是產(chǎn)品運營, 前者是如何去策劃一個好的功能, 去獲得用戶最大的可見的價值以及隱形的價值, 必須的價值以及增值的價值, 那么了解用戶, 去做用戶畫像分析, 會成為數(shù)據(jù)分析去幫助產(chǎn)品做做更好的產(chǎn)品設(shè)計重要的一個環(huán)節(jié)。

那么作為產(chǎn)品運營, 比如要針用戶的拉新, 挽留, 付費, 裂變等等的運營, 用戶畫像分析可以幫助產(chǎn)品運營去找到他們的潛在的用戶, 從而用各種運營的手段去觸達。

因為當我們知道我們的群體的是什么樣的一群人的時候, 潛在的用戶也是這樣的類似的一群人,這樣才可以做最精準的拉新,提高我們的ROI

在真正的工作中, 用戶畫像分析是一個重要的數(shù)據(jù)分析手段去幫助產(chǎn)品功能迭代, 幫助產(chǎn)品運營做用戶增長。

總的來說, 用戶畫像分析就是基于大量的數(shù)據(jù), 建立用戶的屬性標簽體系, 同時利用這種屬性標簽體系去描述用戶

02

用戶畫像的作用

像上面描述的那樣, 用戶畫像的作用主要有以下幾個方面

1.廣告投放

在做用戶增長的例子中, 我們需要在外部的一些渠道上進行廣告投放, 對可能的潛在用戶進行拉新, 比如B站在抖音上投廣告

我們在選擇平臺進行投放的時候, 有了用戶畫像分析, 我們就可以精準的進行廣告投放, 比如抖音的用戶群體是18-24歲的群體, 那么廣告投放的時候就可以針對這部分用戶群體進行投放, 提高投放的ROI

假如我們沒有畫像分析, 那么可能會出現(xiàn)投了很多次廣告, 結(jié)果沒有人點擊

2.精準營銷

假如某個電商平臺需要做個活動給不同的層次的用戶發(fā)放不同的券, 那么我們就要利用用戶畫像對用戶進行劃分, 比如劃分成不同的付費的活躍度的用戶, 然后根據(jù)不同的活躍度的用戶發(fā)放不用的優(yōu)惠券。

比如針對付費次數(shù)在[1-10] 的情況下發(fā) 10元優(yōu)惠券刺激, 依次類推

3.個性化推薦

精確的內(nèi)容分發(fā), 比如我們在音樂app 上看到的每日推薦, 網(wǎng)易云之所以推薦這么準, 就是他們在做點擊率預估模型(預測給你推薦的歌曲你會不會點擊)的時候, 考慮了你的用戶畫像屬性。

比如根據(jù)你是90后, 喜歡傷感的, 又喜歡杰倫, 就會推薦類似的歌曲給你, 這些就是基于用戶畫像推薦

4. 風控檢測

這個主要是金融或者銀行業(yè)設(shè)計的比較多, 因為經(jīng)常遇到的一個問題就是銀行怎么決定要不要給一個申請貸款的人給他去放貸

經(jīng)常的解決方法就是搭建一個風控預測模型, 去預約這個人是否會不還貸款,同樣的, 模型的背后很依賴用戶畫像。

用戶的收入水平, 教育水平, 職業(yè), 是否有家庭,是否有房子, 以及過去的誠信記錄, 這些的畫像數(shù)據(jù)都是模型預測是否準確的重要數(shù)據(jù)

5. 產(chǎn)品設(shè)計

互聯(lián)網(wǎng)的產(chǎn)品價值 離不開 用戶 需求 場景 這三大元素, 所以我們在做產(chǎn)品設(shè)計的時候, 我們得知道我們的用戶到底是怎么樣的一群人, 他們的具體情況是什么, 他們有什么特別的需求, 這樣我們才可以設(shè)計出對應(yīng)解決他們需求痛點的產(chǎn)品功能

在產(chǎn)品功能迭代的時候, 我們需要分析用戶畫像行為數(shù)據(jù), 去發(fā)現(xiàn)用戶的操作流失情況, 最典型的一種場景就是漏斗轉(zhuǎn)化情況, 就是基于用戶的行為數(shù)據(jù)去發(fā)現(xiàn)流失嚴重的頁面, 從而相對應(yīng)的去優(yōu)化對應(yīng)的頁面,

比如我們發(fā)現(xiàn)從下載到點擊付款轉(zhuǎn)化率特別低,那么有可能就是我們付款的按鈕的做的有問題, 就可以針對性的優(yōu)化按鈕的位置等等

同時也可以分析這部分轉(zhuǎn)化率主要是在那部分用戶群體中低, 假如發(fā)現(xiàn)高齡的用戶的轉(zhuǎn)化率要比中青年的轉(zhuǎn)化率低很多, 那有可能是因為我們字體的設(shè)置以及按鈕本身位置不顯眼等等, 還有操作起來不方便等等因素

6. 數(shù)據(jù)分析

在做描述性的數(shù)據(jù)分析的時候, 經(jīng)常需要畫像的數(shù)據(jù), 比如描述抖音的美食博主是怎么樣的一群人, 他們的觀看的情況, 他們的關(guān)注其他博主的情況等等

簡單來說就是去做用戶刻畫的時候, 用戶畫像可以幫助數(shù)據(jù)分析刻畫用戶更加清晰。

03

如何搭建用戶畫像

用戶畫像搭建的架構(gòu)如下:

數(shù)據(jù)層:

首先 是數(shù)據(jù)層, 用戶畫像的基礎(chǔ)是首先要去獲取完整的數(shù)據(jù), 互聯(lián)網(wǎng)的數(shù)據(jù)主要是利用打點, 也就是大家說的數(shù)據(jù)埋點上報上來的, 整個過程就是數(shù)據(jù)分析師會根據(jù)業(yè)務(wù)需要提數(shù)據(jù)上報的需求,然后由開發(fā)完成, 這樣就有了上報的數(shù)據(jù)。

除了上報的數(shù)據(jù), 還有其他數(shù)據(jù)庫同步的數(shù)據(jù), 一般會把數(shù)據(jù)庫的數(shù)據(jù)同步到hive表中, 按照數(shù)據(jù)倉庫的規(guī)范,按照一個個主題來放置

還有一些其他的數(shù)據(jù)比如外部的一些調(diào)研的數(shù)據(jù), 以excel 格式存在, 就需要把excel 數(shù)據(jù)導入到hive 表中

挖掘?qū)?

有了基礎(chǔ)的數(shù)據(jù)以后, 就進入到挖掘?qū)? 這個層次主要是兩件事情, 一個是數(shù)據(jù)倉庫的構(gòu)建, 一個是標簽的預測, 前者是后者的基礎(chǔ)。

一般來說我們會根據(jù)數(shù)據(jù)層的數(shù)據(jù)表, 對這些數(shù)據(jù)表的數(shù)據(jù)進行數(shù)據(jù)清洗,數(shù)據(jù)計算匯總,然后按照數(shù)據(jù)倉庫的分層思想, 比如按照 數(shù)據(jù)原始層, 數(shù)據(jù)清洗層,數(shù)據(jù)匯總層, 數(shù)據(jù)應(yīng)用層等等進行表的設(shè)計

數(shù)據(jù)原始層的表的數(shù)據(jù)就是上報上來的數(shù)據(jù)入庫的數(shù)據(jù),這一層的數(shù)據(jù)沒有經(jīng)過數(shù)據(jù)清洗處理, 是最外層的用戶明細數(shù)據(jù)

數(shù)據(jù)清洗層主要是數(shù)據(jù)原始層的數(shù)據(jù)經(jīng)過簡單數(shù)據(jù)清洗之后的數(shù)據(jù)層, 主要是去除明顯是臟數(shù)據(jù), 比如年齡大于200歲, 地域來自 FFFF的等明顯異常數(shù)據(jù)

數(shù)據(jù)匯總層的數(shù)據(jù)主要是根據(jù)數(shù)據(jù)分析的需求, 針對想要的業(yè)務(wù)指標, 比如用戶一天的聽歌時長, 聽歌歌曲數(shù), 聽的歌手數(shù)目等等, 就可以按照用戶的維度, 把他的行為進行聚合, 得到用戶的輕量指標的聚合的表。

這個層的用處主要是可以快速求出比如一天的聽歌總數(shù), 聽歌總時長, 聽歌時長高于1小時的用戶數(shù), 收藏歌曲數(shù)高于100 的用戶數(shù)是多少等等的計算就可以從這個層的表出來

數(shù)據(jù)應(yīng)用層主要是面向業(yè)務(wù)方的需求進行加工,可能是在數(shù)據(jù)匯總的基礎(chǔ)上加工成對應(yīng)的報表的指標需求, 比如每天聽歌的人數(shù), 次數(shù), 時長,搜索的人數(shù), 次數(shù), 歌曲數(shù)等等

按照規(guī)范的數(shù)據(jù)倉庫把表都設(shè)計完成后, 我們就得到一部分的用戶的年齡性別地域的基礎(chǔ)屬性的數(shù)據(jù)以及用戶觀看付費 活躍等等行為的數(shù)據(jù)

但是有一些用戶的數(shù)據(jù)是拿不到的比如音樂app 為例, 我們一般是拿不到用戶的聽歌偏好這個屬性的數(shù)據(jù), 我們就要通過機器學習的模型對用戶的偏好進行預測


機器學習的模型預測都是基于前面我們構(gòu)建的數(shù)據(jù)倉庫的數(shù)據(jù)的, 因為只有完整的數(shù)據(jù)倉庫的數(shù)據(jù), 是模型特征構(gòu)建的基礎(chǔ)

服務(wù)層:

有了數(shù)據(jù)層和挖掘?qū)右院? 我們基本對用戶畫像體系構(gòu)建的差不多, 那么就到了用戶畫像賦能的階段。

最基礎(chǔ)的應(yīng)用就是利用用戶畫像寬表的數(shù)據(jù),對用戶的行為進行洞察歸因 挖掘行為和屬性特征上的規(guī)律

另外比較大型的應(yīng)用就是搭建用戶畫像的平臺, 背后就是用戶畫像表的集成。

用戶提取:我們可以利用用戶畫像平臺, 進行快速的用戶選取, 比如抽取18-24歲的女性群體 聽過杰倫歌曲的用戶, 我們就可以快速的抽取。

分群對比:我們可以利用畫像平臺進行分群對比。比如我們想要比較音樂vip 的用戶和非vip 的用戶他們在行為活躍和年齡性別地域 注冊時間, 聽歌偏好上的差異, 我們就可以利用這個平臺來完成

功能畫像分析:我們還可以利用用戶畫像平臺進行快速進行某個功能的用戶畫像描述分析, 比如音樂app 的每日推薦功能, 我們想要知道使用每日推薦的用戶是怎么樣的用戶群體,以及使用每日推薦不同時長的用戶他們的用戶特征分別都是怎么樣的,就可以快速的進行分析

責任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3644

    瀏覽量

    51684
  • 數(shù)據(jù)分析
    +關(guān)注

    關(guān)注

    2

    文章

    1501

    瀏覽量

    35914
  • 用戶畫像
    +關(guān)注

    關(guān)注

    0

    文章

    7

    瀏覽量

    2537

原文標題:數(shù)據(jù)分析思維和方法—用戶畫像分析

文章出處:【微信號:DBDevs,微信公眾號:數(shù)據(jù)分析與開發(fā)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    京東:調(diào)用用戶畫像API實現(xiàn)千人千面推薦,提升轉(zhuǎn)化率

    ? ?引言 在電商領(lǐng)域,個性化推薦已成為提升用戶粘性和轉(zhuǎn)化率的核心引擎。京東通過深度整合用戶畫像API,實現(xiàn)了"千人千面"的精準推薦系統(tǒng)。本文將解析其技術(shù)邏輯與業(yè)務(wù)價值,揭示如何通過數(shù)據(jù)
    的頭像 發(fā)表于 09-12 15:08 ?583次閱讀
    京東:調(diào)用<b class='flag-5'>用戶</b><b class='flag-5'>畫像</b>API實現(xiàn)千人千面推薦,提升轉(zhuǎn)化率

    蘇寧易購 API 接口:蘇寧易購平臺促銷活動用戶參與度分析

    ? 在電商平臺的激烈競爭中,促銷活動是提升用戶粘性和銷售轉(zhuǎn)化的核心策略。蘇寧易購作為中國領(lǐng)先的零售平臺,其API接口為開發(fā)者提供了高效的數(shù)據(jù)訪問能力,助力深度分析用戶參與度。本文將逐步
    的頭像 發(fā)表于 09-01 17:15 ?475次閱讀
    蘇寧易購 API 接口:蘇寧易購平臺促銷活動<b class='flag-5'>用戶</b>參與度<b class='flag-5'>分析</b>

    用小紅書電商 API 實現(xiàn)小紅書店鋪商品用戶畫像精準構(gòu)建

    ? 在當今社交電商時代,小紅書作為領(lǐng)先的內(nèi)容電商平臺,擁有海量用戶數(shù)據(jù)和商品信息。店鋪通過構(gòu)建精準用戶畫像,能實現(xiàn)個性化推薦、提升轉(zhuǎn)化率和用戶粘性。利用小紅書電商 API,開發(fā)者可以自
    的頭像 發(fā)表于 08-28 15:57 ?401次閱讀
    用小紅書電商 API 實現(xiàn)小紅書店鋪商品<b class='flag-5'>用戶</b><b class='flag-5'>畫像</b>精準構(gòu)建

    物聯(lián)網(wǎng)數(shù)據(jù)中臺的重要性體現(xiàn)在哪

    驅(qū)動的核心競爭力 數(shù)據(jù)資產(chǎn)化 數(shù)據(jù)中臺將分散在各業(yè)務(wù)系統(tǒng)的數(shù)據(jù)轉(zhuǎn)化為可量化、可管理的資產(chǎn),形成企業(yè)獨有的“數(shù)據(jù)資本”。例如,零售企業(yè)通過整合用戶
    的頭像 發(fā)表于 08-27 09:16 ?319次閱讀

    還在憑感覺做畫像?GWI 利用大數(shù)據(jù)精準繪制核心客戶群

    當前企業(yè)構(gòu)建客戶畫像常受限于滯后的人口統(tǒng)計數(shù)據(jù)和模糊標簽(如“都市年輕人”),導致營銷精準度不足。GWI 消費者洞察工具通過整合全球?qū)崟r行為數(shù)據(jù)與AI分析能力(Spark),以四步法構(gòu)
    的頭像 發(fā)表于 07-29 13:28 ?553次閱讀
    還在憑感覺做<b class='flag-5'>畫像</b>?GWI 利用大<b class='flag-5'>數(shù)據(jù)</b>精準繪制核心客戶群

    構(gòu)建自定義電商數(shù)據(jù)分析API

    ? 在電商業(yè)務(wù)中,數(shù)據(jù)是驅(qū)動決策的核心。隨著數(shù)據(jù)量的增長,企業(yè)需要實時、靈活的分析工具來監(jiān)控銷售、用戶行為和庫存等指標。一個自定義電商數(shù)據(jù)分析
    的頭像 發(fā)表于 07-17 14:44 ?393次閱讀
    構(gòu)建自定義電商<b class='flag-5'>數(shù)據(jù)分析</b>API

    壓力數(shù)據(jù)記錄儀功能有哪些?點開看看就知道

    在工業(yè)、科研等眾多領(lǐng)域,壓力數(shù)據(jù)的精確記錄和分析至關(guān)重要。想要測量壓力數(shù)據(jù),必然需要用到專業(yè)的工具,那就是壓力數(shù)據(jù)記錄儀。那么,壓力
    發(fā)表于 05-19 16:39

    5G網(wǎng)絡(luò)中,信令測試儀如何幫助提升用戶體驗?

    令測試儀能夠?qū)崟r捕獲5G網(wǎng)絡(luò)中的信令數(shù)據(jù),包括無線接入網(wǎng)、核心網(wǎng)和用戶設(shè)備(UE)之間的交互信息。 通過對信令數(shù)據(jù)的深度分析,信令測試儀可以迅速找出網(wǎng)絡(luò)中的故障點和性能瓶頸,如信號干擾
    發(fā)表于 03-21 14:33

    試驗機數(shù)據(jù)采集管理系統(tǒng)的核心就是對試驗規(guī)程的嚴格遵循

    數(shù)據(jù)采集管理系統(tǒng)應(yīng)運而生。它不僅能夠?qū)崟r采集試驗數(shù)據(jù),還能對試驗結(jié)果進行統(tǒng)計分析,規(guī)范試驗過程,提高管理效率。 ???????一、試驗規(guī)程與標準管理 ???????試驗機數(shù)據(jù)采集管理系
    的頭像 發(fā)表于 02-14 09:22 ?462次閱讀

    七款經(jīng)久不衰的數(shù)據(jù)可視化工具!

    ,能夠?qū)?b class='flag-5'>數(shù)據(jù)直觀地呈現(xiàn)為交互式圖形。它支持與多種數(shù)據(jù)庫連接,適合需要進行深度分析用戶。Tableau 具有強大的圖形能力,但對系統(tǒng)資源要求較高,且價格較貴。 · Power B
    發(fā)表于 01-19 15:24

    電力系統(tǒng)數(shù)據(jù)分析技術(shù)

    和可靠性。 數(shù)據(jù)來源與類型 電力系統(tǒng)數(shù)據(jù)分析數(shù)據(jù)來源廣泛,包括但不限于: 電網(wǎng)運行數(shù)據(jù) :包括電壓、電流、功率、頻率等實時監(jiān)測數(shù)據(jù)。
    的頭像 發(fā)表于 01-18 09:46 ?1167次閱讀

    數(shù)據(jù)網(wǎng)絡(luò)分析儀的原理和應(yīng)用場景

    : 企業(yè)網(wǎng)絡(luò):在企業(yè)內(nèi)部網(wǎng)絡(luò)中,網(wǎng)絡(luò)分析儀能夠幫助管理員監(jiān)控員工活動、優(yōu)化網(wǎng)絡(luò)性能、確保數(shù)據(jù)傳輸安全。 數(shù)據(jù)中心:數(shù)據(jù)中心是大規(guī)模數(shù)據(jù)處理和
    發(fā)表于 01-16 14:57

    Vivado Design Suite用戶指南: 設(shè)計分析與收斂技巧

    電子發(fā)燒友網(wǎng)站提供《Vivado Design Suite用戶指南: 設(shè)計分析與收斂技巧.pdf》資料免費下載
    發(fā)表于 01-15 15:28 ?2次下載
    Vivado Design Suite<b class='flag-5'>用戶</b>指南: 設(shè)計<b class='flag-5'>分析</b>與收斂技巧

    ads1115將ADDR線接地數(shù)據(jù)就是255,ADDR浮空數(shù)據(jù)就是65535不變,問題出在哪里?

    我將ADDR線接地數(shù)據(jù)就是255,ADDR浮空數(shù)據(jù)就是65535不變,不知道哪里出問題了我將程序上傳
    發(fā)表于 12-31 08:25

    如何使用自然語言處理分析文本數(shù)據(jù)

    媒體、新聞報道、用戶評論等)收集你感興趣的文本數(shù)據(jù)。 數(shù)據(jù)清洗 :去除無關(guān)字符(如HTML標簽、特殊符號等),確保文本數(shù)據(jù)干凈且一致。 2. 預處理 分詞 :將文本分割成有意義的單元(
    的頭像 發(fā)表于 12-05 15:27 ?2369次閱讀