chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深入研究文獻中關于圖像修復的第一個生成模型

新機器視覺 ? 來源:AI公園 ? 作者:AI公園 ? 2021-03-20 09:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導讀

本文給出了圖像恢復的一般性框架,編解碼器 + GAN,后面的圖像復原基本都是這個框架。

本文會介紹圖像修復的目的,它的應用,等等。然后,我們將深入研究文獻中關于圖像修復的第一個生成模型(即第一個基于GAN的修復算法,上下文編碼器)。

目標

很簡單的!我們想要填補圖像中缺失的部分。如圖1所示。

圖1,中心缺失的圖像(左),復原后的圖像(右)。

應用

移除圖像中不需要的部分(即目標移除)

修復損壞的圖像(可以擴展到修復電影)

很多其他應用!

術語

給出一個有一些缺失區(qū)域的圖像,我們定義

缺失像素/生成像素/空洞像素:待填充區(qū)域的像素。

有效像素/ground truth像素:和缺失像素含義相反。需要保留這些像素,這些像素可以幫助我們填補缺失的區(qū)域。

傳統(tǒng)方法

給出一個有一些缺失區(qū)域的圖像,最典型的傳統(tǒng)方法填充缺失區(qū)域是復制粘貼。

主要思想是從圖像本身或一個包含數(shù)百萬張圖像的大數(shù)據(jù)集中尋找最相似的圖像補丁,然后將它們粘貼到缺失的區(qū)域。

然而,搜索算法可能是耗時的,它涉及到手工設計距離的度量方法。在通用化和效率方面仍有改進的空間。

數(shù)據(jù)驅動的基于深度學習的方法

由于卷積神經網絡(Convolutional Neural Networks, CNNs)在圖像處理方面的成功,很多人開始將CNNs應用到自己的任務中。基于數(shù)據(jù)驅動的深度學習方法的強大之處在于,如果我們有足夠的訓練數(shù)據(jù),我們就可以解決我們的問題。

如上所述,圖像修復就是將圖像中缺失的部分補上。這意味著我們想要生成一些不存在或沒有答案的東西。因此,所有基于深度學習的修復算法都使用生成對抗網絡(GANs)來產生視覺上吸引人的結果。為什么視覺上吸引人呢?由于沒有模型來回答生成的問題,人們更喜歡有良好視覺質量的結果,這是相當主觀的!

對于那些可能不知道GANs的讀者,我推薦你先去了解一下。這里以圖像修復為例,簡單地說,典型的GAN由一個生成器和一個鑒別器組成。生成器負責填補圖像中缺失的部分,鑒別器負責區(qū)分已填充圖像和真實圖像。請注意,真實的圖像是處于良好狀態(tài)的圖像(即沒有缺失的部分)。我們將隨機地將填充的圖像或真實的圖像輸入識別器來欺騙它。最終,如果鑒別器不能判斷圖像是被生成器填充的還是真實的圖像,生成器就能以良好的視覺質量填充缺失的部分!

第一個基于GAN的修復方法:上下文編碼器

在對image inpainting做了簡單的介紹之后,我希望你至少知道什么是image inpainting, GANs(一種生成模型)是inpainting領域常用的一種。現(xiàn)在,我們將深入研究本系列的第一篇論文。

Intention

作者想訓練一個CNN來預測圖像中缺失的像素。眾所周知,典型的CNNs(例如LeNet手寫數(shù)字識別和AlexNet圖像分類)包含許多的卷積層來提取特征,從簡單的結構特征到高級的語義特征(即早期層簡單的特征,比如邊緣,角點,到后面的層的更復雜的特征模式)。對于更復雜的功能模式,作者想利用學到的高層語義特征(也稱為隱藏特征)來幫助填充缺失的區(qū)域。

此外,為修復而學習的特征需要對圖像進行更深層次的語義理解。因此,學習到的特征對于其他任務也很有用,比如分類、檢測和語義分割。

背景

在此,我想為讀者提供一些背景信息,

Autoencoders:這是一種通常用于重建任務的CNN結構。由于其形狀,也有人稱之為沙漏結構模型。對于這個結構,輸出大小與輸入大小相同,我們實際上有兩個部分,一個是編碼器,另一個是解碼器,如下圖2所示。編碼器部分用于特征編碼,針對輸入得到緊湊潛在的特征表示,而解碼器部分則對潛在特征表示進行解碼。我們通常把中間層稱為低維的“瓶頸”層,或者簡單地稱之為“瓶頸”,因此整個結構看起來就像一個沙漏。讓我們想象一下,我們將一幅完好無損的圖像輸入到這個自動編碼器中。在這種情況下,我們期望輸出應該與輸入完全相同。這意味著一個完美的重建。如果可能的話,“瓶頸”是輸入的一個完美的緊湊潛在特征表示。更具體地說,我們可以使用更少的數(shù)字來表示輸入(即更有效,它與降維技術有關)。因此,這個“瓶頸”包含了幾乎所有的輸入信息(可能包括高級語義特征),我們可以使用它來重構輸入。

圖2,自編碼器的結構圖解

上下文編碼器進行圖像生成

圖3,提出的上下文編碼器

圖3顯示了提出的上下文編碼器的概要。首先,輸入的是mask圖像(即有中心缺失的圖像)。輸入編碼器以獲得編碼后的特征。然后,本文的主要貢獻是在編碼特征和解碼特征之間放置通道全連接層,以獲得更好的語義特征(即“瓶頸”)。最后,解碼器利用“瓶頸”特征重建缺失的部分。讓我們來看看他們的網絡內部。

圖4,提出的網絡的結構細節(jié)

編碼器

編碼器使用AlexNet結構,他們用隨機初始化權值從頭開始訓練他們的網絡。

與原始的AlexNet架構和圖2所示的自動編碼器相比,主要的區(qū)別是中間的通道全連接層。如果網絡中只有卷積層,則無法利用特征圖上距離很遠的空間位置的特征。為了解決這個問題,我們可以使用全連接層,即當前層的每個神經元的值依賴于上一層的所有神經元的值。然而,全連接層會引入許多參數(shù),8192x8192=67.1M,這甚至在GPU上也很難訓練,作者提出了通道全連接層來解決這個問題。

通道全連接層

實際上,通道全連接層非常簡單。我們只是完全獨立地連接每個通道而不是所有的通道。例如,我們有m個大小為nxn的特征映射。如果使用標準的全連接層,我們會有m2n?個參數(shù),對于通道級的全連接層,我們只有mn?個參數(shù)。因此,我們可以在距離很遠的空間位置上捕獲特征,而不需要添加那么多額外的參數(shù)。

解碼器

對于解碼器來說,這只是編碼過程的反向。我們可以使用一系列的轉置卷積來獲得期望大小的重建圖像。

損失函數(shù)

本文使用的損失函數(shù)由兩項組成。第一項是重建損失(L2損失),它側重于像素級的重建精度(即PSNR方向的損失),但總是會導致圖像模糊。第二個是對抗損失,它通常用于GANs。它鼓勵真實圖像和填充圖像之間數(shù)據(jù)分布更接近。

對于那些對損失函數(shù)感興趣的讀者,我強烈推薦你們閱讀這篇論文中的方程。在這里,我只是口頭描述每個損失項。

f6324406-88ee-11eb-8b86-12bb97331649.png

重建損失(L2損失),M表示缺失的區(qū)域(1表示缺失區(qū)域,0表示有效像素),F(xiàn)是生成器

L2損失:計算生成的像素與對應ground truth像素之間的L2距離(歐幾里得距離)。只考慮圖4中所示的缺失區(qū)域。

f662eec6-88ee-11eb-8b86-12bb97331649.png

對抗損失,D是鑒別器。我們希望訓練出一種能夠區(qū)分填充圖像和真實圖像的鑒別器

對抗損失:對抗鑒別器的結構如圖4所示。鑒別器的輸出是一個二進制值0或1。如果輸入是真實圖像,則為1,如果輸入是填充圖像,則為0。

f6f51800-88ee-11eb-8b86-12bb97331649.png

聯(lián)合損失,Lambda_rec為0.999,Lambda_adv為0.001

使用隨機梯度下降(SGD),Adam優(yōu)化器交替訓練生成器和鑒別器。

實驗結果

評估使用了兩個數(shù)據(jù)集,即Paris Street View和ImageNet。

作者首先展示了修復結果,然后他們還表明,作為預訓練步驟,學習到的特征可以遷移到其他任務中。

語義修復

圖5,修復結果,前3行是ImageNet數(shù)據(jù)集的結果,下面2行是來自Paris StreetView數(shù)據(jù)集的結果

圖5顯示了使用建議的上下文編碼器的修復結果。

f95796b8-88ee-11eb-8b86-12bb97331649.png

表1,Paris StreetView數(shù)據(jù)集的像素重建損失

作者與傳統(tǒng)的最近鄰修復算法進行了比較。顯然,該方法優(yōu)于最近鄰修復方法。

圖6,使用不同方法的修復結果

圖6顯示了使用各種方法的修復結果。我們可以看到L2損失傾向于給出模糊的圖像(第二列)。L2 +對抗性的損失給更清晰的填充圖像。對于NN-Inpainting,他們只是復制和粘貼最相似的圖像補丁到缺失的區(qū)域。

特征學習

圖7,最近鄰的上下文

為了顯示他們學習到的特征的有用性,作者嘗試編碼不同的圖像patch,并根據(jù)編碼的特征得到最相似的patch。在圖7中。作者將其與傳統(tǒng)的HOG和典型的AlexNet進行了比較。它們實現(xiàn)了與AlexNet類似的表現(xiàn),但AlexNet是在一百萬張標有數(shù)據(jù)集的圖像上預訓練的。

f9f5acd6-88ee-11eb-8b86-12bb97331649.png

表2,分類、檢測和語義分割的定量比較。

如表2所示,在ImageNet上預訓練過的模型具有最好的性能,但需要昂貴的標簽。在該方法中,上下文是用于訓練模型的監(jiān)督。這就是他們所謂的通過修復圖像來學習特征。很明顯,它們學習到的特征表示與其他借助輔助監(jiān)督訓練的模型相當,甚至更好。

總結

所提出的上下文編碼器訓練可以在上下文的條件下生成圖像。在語義修復方面達到了最先進的性能。

學習到的特征表示也有助于其他任務,如分類,檢測和語義分割。

要點

我想在這里強調一些要點。

對于圖像修復,我們必須使用來自有效像素的“提示”來幫助填充缺失的像素?!吧舷挛摹币辉~是指對整個圖像本身的理解。

本文的主要貢獻是通道全連接層。其實,理解這一層并不難。對我來說,它是Non-Local Neural Networks或Self-Attention的早期版本/簡化版本。主要的一點是,前一層的所有特征位置對當前層的每個特征位置都有貢獻。從這個角度來看,我們對整個圖像的語義理解會更加深入。這個概念在后面的文章中被廣泛采用!

所有后來的修復論文都遵循了GAN-based結構(即編碼器-解碼器結構)。人們的目標是具有良好視覺質量的充滿圖像。

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 編碼器
    +關注

    關注

    45

    文章

    3899

    瀏覽量

    141337
  • 圖像
    +關注

    關注

    2

    文章

    1095

    瀏覽量

    42144
  • 模型
    +關注

    關注

    1

    文章

    3644

    瀏覽量

    51684

原文標題:用生成模型來做圖像恢復的介紹和回顧:上下文編碼器

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    使用Firebase AI Logic生成圖像模型的兩種新功能

    為您的應用添加自定義圖像,能夠顯著改善和個性化用戶體驗,有效提高用戶參與度。本文將探討使用 Firebase AI Logic 生成圖像的兩種新功能: 其是 Imagen 專屬編輯功
    的頭像 發(fā)表于 11-30 09:28 ?172次閱讀

    Linux 下交叉編譯實戰(zhàn):跑起來你的第一個 STM32 程序

    跑起來你的第一個STM32程序。、準備工作在開始之前,需要準備:1、Linux開發(fā)環(huán)境Ubuntu、Debian或其他主流發(fā)行版都可以。2、ARMGCC交叉編譯工具
    的頭像 發(fā)表于 11-24 19:04 ?193次閱讀
    Linux 下交叉編譯實戰(zhàn):跑起來你的<b class='flag-5'>第一個</b> STM32 程序

    在Ubuntu20.04系統(tǒng)訓練神經網絡模型些經驗

    模型。 我們使用MNIST數(shù)據(jù)集,訓練卷積神經網絡(CNN)模型,用于手寫數(shù)字識別。模型
    發(fā)表于 10-22 07:03

    【Sipeed MaixCAM Pro開發(fā)板試用體驗】基于MaixCAM-Pro的AI生成圖像鑒別系統(tǒng)

    1. 項目概述 本項目旨在開發(fā)并部署高精度的深度學習模型,用于自動鑒別張圖片是由AI生成(如Stable Diffusion, DAL
    發(fā)表于 08-21 13:59

    模型推理顯存和計算量估計方法研究

    ,為實際應用提供了有益的參考。 未來,我們將繼續(xù)深入研究模型推理的優(yōu)化方法,以降低顯存和計算資源的需求,提高深度學習模型在實際應用的性能。
    發(fā)表于 07-03 19:43

    模型自適應控制在永磁同步電機轉速的仿真研究

    的可行性和有效性。 純分享帖,點擊下方附件免費獲取完整資料~~~ *附件:無模型自適應控制在永磁同步電機轉速的仿真研究.pdf 【免責聲明】本文系網絡轉載,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請
    發(fā)表于 06-25 13:01

    利用NVIDIA 3D引導生成式AI Blueprint控制圖像生成

    AI 賦能的圖像生成技術突飛猛進,從早期模型生成手指過多的人類圖像,到現(xiàn)在能創(chuàng)造出令人驚嘆的逼真視覺效果。即使取得了如此飛躍,仍然存在
    的頭像 發(fā)表于 06-05 09:24 ?720次閱讀

    Gemini API集成Google圖像生成模型Imagen 3

    開發(fā)者現(xiàn)在可以通過 Gemini API 訪問 Google 最先進的圖像生成模型 Imagen 3。該模型最初僅對付費用戶開放,不久后也將面向免費用戶推出。
    的頭像 發(fā)表于 05-14 16:53 ?919次閱讀

    直流電機控制方法的Matlab仿真研究

    針對無刷直流電機的控制方法進行了深入研究 。根據(jù)無刷直流電機實際物理模型建立相應的數(shù)學模型,電機使用雙閉環(huán)進行控制 。根據(jù)電機的實際工作特點,使用模糊自適應 PID 算法替代常規(guī) PID 算法建立
    發(fā)表于 03-27 12:15

    小白學大模型:訓練大語言模型的深度指南

    在當今人工智能飛速發(fā)展的時代,大型語言模型(LLMs)正以其強大的語言理解和生成能力,改變著我們的生活和工作方式。在最近的研究,科學家
    的頭像 發(fā)表于 03-03 11:51 ?1195次閱讀
    小白學大<b class='flag-5'>模型</b>:訓練大語言<b class='flag-5'>模型</b>的深度指南

    文詳解視覺語言模型

    視覺語言模型(VLM)是種多模態(tài)、生成式 AI 模型,能夠理解和處理視頻、圖像和文本。
    的頭像 發(fā)表于 02-12 11:13 ?3174次閱讀
    <b class='flag-5'>一</b>文詳解視覺語言<b class='flag-5'>模型</b>

    【「基于大模型的RAG應用開發(fā)與優(yōu)化」閱讀體驗】+第一章初體驗

    《基于大模型的RAG應用開發(fā)與優(yōu)化》試讀報告 ——第一章:了解大模型與RAG 近年來,隨著人工智能技術的快速發(fā)展,大模型生成式AI技術逐
    發(fā)表于 02-07 10:42

    電容器深入研究:電路保護、濾波和能量存儲

    校參加了些課程,并獲得了關于何時使用電容器以及它們如何工作的真實示例。從電路保護到濾波,從能量存儲到傳感,我正在深入研究簡單而復雜的電容器世界。 這些東西是如何運作的? 事實上,
    的頭像 發(fā)表于 01-25 15:13 ?912次閱讀
    電容器<b class='flag-5'>深入研究</b>:電路保護、濾波和能量存儲

    借助谷歌Gemini和Imagen模型生成高質量圖像

    以獲得卓越的視覺效果。這個過程并不止于此;圖像生成,Imagen 2 可以進步優(yōu)化以滿足特定需求,從而創(chuàng)建
    的頭像 發(fā)表于 01-03 10:38 ?1321次閱讀
    借助谷歌Gemini和Imagen<b class='flag-5'>模型</b><b class='flag-5'>生成</b>高質量<b class='flag-5'>圖像</b>

    Google兩款先進生成式AI模型登陸Vertex AI平臺

    新的 AI 模型,包括最先進的視頻生成模型Veo以及最高品質的圖像生成模型Imagen 3。近日
    的頭像 發(fā)表于 12-30 09:56 ?964次閱讀