chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于光學(xué)神經(jīng)網(wǎng)絡(luò)的機(jī)器視覺(jué)系統(tǒng)的缺點(diǎn)與應(yīng)用

中科院長(zhǎng)春光機(jī)所 ? 來(lái)源:中國(guó)光學(xué) ? 作者:李競(jìng)曦 ? 2021-04-08 11:43 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在自動(dòng)化和智能技術(shù)發(fā)展日益成熟的今天,機(jī)器視覺(jué)系統(tǒng)(名詞解釋)在許多領(lǐng)域被廣泛應(yīng)用,包括自動(dòng)駕駛汽車(chē)、智能制造、自動(dòng)化手術(shù)和生物醫(yī)學(xué)成像等。

這些機(jī)器視覺(jué)系統(tǒng)大多使用基于普通光學(xué)鏡頭模組的相機(jī),在拍攝通常高達(dá)具有數(shù)百萬(wàn)像素的圖像或視頻后,通常將其饋送到如GPU等數(shù)字邏輯處理單元從而來(lái)執(zhí)行一定的機(jī)器學(xué)習(xí)任務(wù),例如物體識(shí)別、分類(lèi)和場(chǎng)景分割等。

藝術(shù)效果圖:基于光學(xué)神經(jīng)網(wǎng)絡(luò)的機(jī)器視覺(jué)系統(tǒng)

這種經(jīng)典的機(jī)器視覺(jué)架構(gòu)具有如下幾個(gè)方面的缺點(diǎn):

第一,高像素傳感器拍攝帶來(lái)大量信息使其難以實(shí)現(xiàn)極高速的圖像或視頻數(shù)字化存儲(chǔ)和分析,尤其在使用移動(dòng)設(shè)備和電池供電的設(shè)備時(shí)更是帶來(lái)了能耗和性能的平衡問(wèn)題;

第二,所捕獲的圖像通常包含許多對(duì)機(jī)器學(xué)習(xí)任務(wù)無(wú)用的冗余信息,帶來(lái)了后端處理器某種程度上的性能負(fù)擔(dān),和資源浪費(fèi),從而導(dǎo)致在功耗和內(nèi)存需求方面效率低下。

第三,在可見(jiàn)光的波長(zhǎng)以外的電磁波段制造高像素?cái)?shù)圖像傳感器(如手機(jī)相機(jī)中的傳感器)具有很大的挑戰(zhàn)性,且其成本十分昂貴,因而也限制了機(jī)器視覺(jué)系統(tǒng)在更長(zhǎng)波段(如太赫茲)上的應(yīng)用。

最近,加州大學(xué)洛杉磯分校(UCLA)的研究人員開(kāi)發(fā)了一種新的單像素機(jī)器視覺(jué)系統(tǒng),通過(guò)引入光學(xué)神經(jīng)網(wǎng)絡(luò)(名詞解釋)的方式規(guī)避了傳統(tǒng)機(jī)器視覺(jué)系統(tǒng)的諸多缺點(diǎn)。

圖1 來(lái)自加州大學(xué)洛杉磯分校的研究人員發(fā)明了一個(gè)新型單像素機(jī)器視覺(jué)系統(tǒng),該系統(tǒng)可以將物體的空域信息編碼為功率譜,從而實(shí)現(xiàn)對(duì)圖像進(jìn)行分類(lèi)和重建。

該成果以Spectrally encoded single-pixel machine vision using diffractive networks為題發(fā)表在Science Advances。

研究人員借助深度學(xué)習(xí)技術(shù),設(shè)計(jì)了一個(gè)由多個(gè)衍射層組成的衍射光學(xué)神經(jīng)網(wǎng)絡(luò)(Diffractive Optical Neural Networks)(拓展閱讀),這些衍射層由計(jì)算機(jī)自動(dòng)優(yōu)化設(shè)計(jì),可將經(jīng)過(guò)的輸入光場(chǎng)調(diào)制成一定的目標(biāo)分布,從而能夠執(zhí)行計(jì)算和統(tǒng)計(jì)推斷任務(wù)。

與常規(guī)的基于鏡頭模組的相機(jī)不同,該衍射光學(xué)神經(jīng)網(wǎng)絡(luò)以被寬帶光照明的物體作為其輸入,將物體的空域特征信息提取并編碼到衍射光的光譜上,而后光譜信號(hào)由具有頻譜探測(cè)能力的單像素超快傳感器所收集。通過(guò)將物體對(duì)應(yīng)的不同的類(lèi)別分配給不同波長(zhǎng)的光頻譜分量,該系統(tǒng)僅使用單像素傳感器探測(cè)到的輸出光譜即可自動(dòng)對(duì)輸入對(duì)象完成分類(lèi),從而無(wú)需圖像傳感器陣列和后端數(shù)字處理。這種框架實(shí)現(xiàn)了全光學(xué)推理和機(jī)器視覺(jué),在幀速率、內(nèi)存需求和功耗效率方面具有明顯優(yōu)勢(shì),這些特點(diǎn)對(duì)于移動(dòng)計(jì)算(名詞解釋)應(yīng)用而言尤為重要。

圖2. 該系統(tǒng)使用寬帶光對(duì)物體進(jìn)行照明。系統(tǒng)分類(lèi)結(jié)果取決于單像素傳感器測(cè)得的輸出光功率譜上10個(gè)波長(zhǎng)位置上最強(qiáng)的信號(hào),其波長(zhǎng)對(duì)應(yīng)的類(lèi)別即是分類(lèi)預(yù)測(cè)結(jié)果。功率譜信號(hào)還可以輸入到數(shù)字神經(jīng)網(wǎng)絡(luò)中被用于重建物體本身的圖像。

為驗(yàn)證這一概念,研究人員通過(guò)使用單像素傳感器和3D打印的衍射層對(duì)使用手寫(xiě)數(shù)字圖像數(shù)據(jù)集(MNIST)的所構(gòu)建的物體進(jìn)行分類(lèi),在實(shí)驗(yàn)中證明了該框架在太赫茲波段下的性能。研究者基于提前選定的10個(gè)波長(zhǎng)對(duì)實(shí)驗(yàn)系統(tǒng)進(jìn)行了設(shè)計(jì),這10個(gè)波長(zhǎng)被逐一分配給輸入物的不同類(lèi)別(對(duì)應(yīng)手寫(xiě)數(shù)字的0到9),對(duì)物的分類(lèi)結(jié)果取決于傳感器輸出功率譜上10個(gè)波長(zhǎng)位置上信號(hào)最強(qiáng)者的波長(zhǎng)對(duì)應(yīng)的類(lèi)別。

實(shí)驗(yàn)系統(tǒng)中的單像素探測(cè)方案基于太赫茲時(shí)域光譜術(shù)實(shí)現(xiàn),照明光為極短的太赫茲脈沖,網(wǎng)絡(luò)的推理以光速在瞬時(shí)間完成。

最終,該系統(tǒng)在手寫(xiě)數(shù)字分類(lèi)任務(wù)中實(shí)現(xiàn)了超過(guò)96%的分類(lèi)精度,實(shí)驗(yàn)結(jié)果也與數(shù)值模擬非常吻合,證明了該單像素機(jī)器視覺(jué)框架在構(gòu)建低延遲、高效的機(jī)器學(xué)習(xí)系統(tǒng)方面的可行性。除物體分類(lèi)外,研究人員還將此衍射神經(jīng)網(wǎng)絡(luò)的輸出與一個(gè)簡(jiǎn)單的全連接數(shù)字神經(jīng)網(wǎng)絡(luò)相連接,僅通過(guò)功率譜上10個(gè)波長(zhǎng)處的信號(hào)強(qiáng)度來(lái)快速重建此輸入物的圖像,從而實(shí)現(xiàn)了圖像的重建或“解壓縮”。

總而言之,這種單像素對(duì)象分類(lèi)和圖像重建框架可以為新的機(jī)器視覺(jué)系統(tǒng)的開(kāi)發(fā)鋪平道路。該系統(tǒng)具有低像素?cái)?shù)、低延遲、低功耗和低成本的特點(diǎn),以高效、節(jié)省資源的獨(dú)特優(yōu)勢(shì)通過(guò)將物體信息進(jìn)行頻譜編碼來(lái)實(shí)現(xiàn)特定的推理任務(wù),有望廣泛應(yīng)用于移動(dòng)計(jì)算、邊緣計(jì)算(名詞解釋)等領(lǐng)域。

此外,該新框架還可以擴(kuò)展到各種光譜域測(cè)量系統(tǒng),例如光學(xué)相干斷層掃描、紅外波段成像等,有助于構(gòu)建基于衍射神經(jīng)網(wǎng)絡(luò)的光譜和空間信息編碼集成的新型3D傳感和成像方式。
編輯:lyn

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:機(jī)器視覺(jué)技術(shù) | 基于光譜編碼的傳感與成像

文章出處:【微信號(hào):cas-ciomp,微信公眾號(hào):中科院長(zhǎng)春光機(jī)所】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用

    摘要:針對(duì)傳統(tǒng)專家系統(tǒng)不能進(jìn)行自學(xué)習(xí)、自適應(yīng)的問(wèn)題,本文提出了基于種經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的并步電機(jī)故障診斷方法。本文將小波神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)相結(jié)合
    發(fā)表于 06-16 22:09

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?646次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)優(yōu)
    的頭像 發(fā)表于 02-12 15:36 ?905次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過(guò)逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的
    的頭像 發(fā)表于 02-12 15:15 ?846次閱讀

    棱鏡——機(jī)器視覺(jué)系統(tǒng)中常見(jiàn)的重要配件

    棱鏡——機(jī)器視覺(jué)系統(tǒng)中常見(jiàn)的重要配件
    的頭像 發(fā)表于 01-15 17:36 ?529次閱讀
    棱鏡——<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺(jué)系統(tǒng)</b>中常見(jiàn)的重要配件

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1177次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    基于光學(xué)衍射神經(jīng)網(wǎng)絡(luò)的軌道角動(dòng)量復(fù)用全息技術(shù)的設(shè)計(jì)與實(shí)驗(yàn)研究

    隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,光學(xué)神經(jīng)網(wǎng)絡(luò)(ONN)的研究受到廣泛關(guān)注。研究人員從衍射光學(xué)、散射光、光干涉以及光學(xué)傅里葉變換等基礎(chǔ)理論出發(fā),利用各種
    的頭像 發(fā)表于 12-07 17:39 ?2802次閱讀
    基于<b class='flag-5'>光學(xué)</b>衍射<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的軌道角動(dòng)量復(fù)用全息技術(shù)的設(shè)計(jì)與實(shí)驗(yàn)研究

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1848次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),其靈感來(lái)源于生物的視覺(jué)皮層機(jī)制。它通過(guò)模擬人類(lèi)視覺(jué)系統(tǒng)的處理方式,能夠自動(dòng)提取圖像特征,從而在圖像識(shí)別和分類(lèi)任務(wù)中表現(xiàn)出色。 卷積
    的頭像 發(fā)表于 11-15 14:52 ?835次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類(lèi)型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1121次閱讀

    安森美機(jī)器視覺(jué)系統(tǒng)解決方案

    ,它還用于驗(yàn)證數(shù)據(jù)矩陣碼、檢查食品包裝和讀取條形碼。機(jī)器視覺(jué)系統(tǒng)方案指南將全面介紹機(jī)器視覺(jué)系統(tǒng)方案及市場(chǎng)趨勢(shì),本文為第二部分,將重點(diǎn)介紹系統(tǒng)
    的頭像 發(fā)表于 11-14 09:53 ?729次閱讀
    安森美<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺(jué)系統(tǒng)</b>解決方案

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺(tái)新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實(shí)時(shí)機(jī)器學(xué)習(xí)算法,進(jìn)行快速、靈活的信號(hào)分析、去噪、傳感器調(diào)節(jié)校準(zhǔn)、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?653次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一個(gè)在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域廣泛使用的技術(shù),尤其在處理分類(lèi)和回歸問(wèn)題時(shí)。在本文中,我們將深入探討如何從頭開(kāi)始構(gòu)建一個(gè)多層神經(jīng)網(wǎng)絡(luò)模型,包括模型設(shè)計(jì)、
    的頭像 發(fā)表于 07-19 17:19 ?1545次閱讀