chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度分析RNN的模型結(jié)構(gòu),優(yōu)缺點以及RNN模型的幾種應(yīng)用

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:人工智能與算法學(xué)習(xí) ? 作者:人工智能與算法學(xué) ? 2021-05-13 10:47 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的載體,而神經(jīng)網(wǎng)絡(luò)模型中,最經(jīng)典非RNN模型所屬,盡管它不完美,但它具有學(xué)習(xí)歷史信息的能力。后面不管是encode-decode 框架,還是注意力模型,以及自注意力模型,以及更加強(qiáng)大的Bert模型家族,都是站在RNN的肩上,不斷演化、變強(qiáng)的。

這篇文章,闡述了RNN的方方面面,包括模型結(jié)構(gòu),優(yōu)缺點,RNN模型的幾種應(yīng)用,RNN常使用的激活函數(shù),RNN的缺陷,以及GRU,LSTM是如何試圖解決這些問題,RNN變體等。

這篇文章最大特點是圖解版本,其次語言簡練,總結(jié)全面。

概述

傳統(tǒng)RNN的體系結(jié)構(gòu)。Recurrent neural networks,也稱為RNNs,是一類允許先前的輸出用作輸入,同時具有隱藏狀態(tài)的神經(jīng)網(wǎng)絡(luò)。它們通常如下所示:

e2923ba4-b364-11eb-bf61-12bb97331649.png

對于每一時步 , 激活函數(shù) ,輸出 被表達(dá)為:

這里是時間維度網(wǎng)絡(luò)的共享權(quán)重系數(shù)

是激活函數(shù)

e2a0bf26-b364-11eb-bf61-12bb97331649.png

下表總結(jié)了典型RNN架構(gòu)的優(yōu)缺點:

處理任意長度的輸入 計算速度慢
模型形狀不隨輸入長度增加 難以獲取很久以前的信息
計算考慮了歷史信息 無法考慮當(dāng)前狀態(tài)的任何未來輸入
權(quán)重隨時間共享
優(yōu)點 缺點

RNNs應(yīng)用

RNN模型主要應(yīng)用于自然語言處理和語音識別領(lǐng)域。下表總結(jié)了不同的應(yīng)用:

一對一

e2d8925c-b364-11eb-bf61-12bb97331649.png

傳統(tǒng)神經(jīng)網(wǎng)絡(luò)

一對多

e2e514fa-b364-11eb-bf61-12bb97331649.png

音樂生成

多對一

e2f52660-b364-11eb-bf61-12bb97331649.png

e303047e-b364-11eb-bf61-12bb97331649.png

機(jī)器翻譯e31699da-b364-11eb-bf61-12bb97331649.png

RNN 類型圖解例子

對于RNN網(wǎng)絡(luò),所有時間步的損失函數(shù) 是根據(jù)每個時間步的損失定義的,如下所示:損失函數(shù)

時間反向傳播

在每個時間點進(jìn)行反向傳播。在時間步,損失相對于權(quán)重矩陣的偏導(dǎo)數(shù)表示如下:

處理長短依賴

常用激活函數(shù)

RNN模塊中最常用的激活函數(shù)描述如下:

5e33166de-b364-11eb-bf61-12bb97331649.png

e33ef948-b364-11eb-bf61-12bb97331649.png

e3539de4-b364-11eb-bf61-12bb97331649.png

SigmoidTanhRELU

梯度消失/爆炸

在RNN中經(jīng)常遇到梯度消失和爆炸現(xiàn)象。之所以會發(fā)生這種情況,是因為很難捕捉到長期的依賴關(guān)系,因為乘法梯度可以隨著層的數(shù)量呈指數(shù)遞減/遞增。

梯度修剪

梯度修剪是一種技術(shù),用于執(zhí)行反向傳播時,有時遇到的梯度爆炸問題。通過限制梯度的最大值,這種現(xiàn)象在實踐中得以控制。

e367c954-b364-11eb-bf61-12bb97331649.png

門的類型

為了解決消失梯度問題,在某些類型的RNN中使用特定的門,并且通常有明確的目的。它們通常標(biāo)注為,等于:

其中,是特定于門的系數(shù),是sigmoid函數(shù)。主要內(nèi)容總結(jié)如下表:

Gated Recurrent Unit(GRU)和長-短期記憶單元(LSTM)處理傳統(tǒng)RNNs遇到的消失梯度問題,LSTM是GRU的推廣。下表總結(jié)了每種結(jié)構(gòu)的特征方程:GRU/LSTM

e3730e68-b364-11eb-bf61-12bb97331649.png

注:符號表示兩個向量之間按元素相乘。

RNN的變體

下表總結(jié)了其他常用的RNN模型:

e3a643e6-b364-11eb-bf61-12bb97331649.png

e3e31410-b364-11eb-bf61-12bb97331649.png

Bidirectional (BRNN)Deep (DRNN)

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 函數(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    4380

    瀏覽量

    64843
  • rnn
    rnn
    +關(guān)注

    關(guān)注

    0

    文章

    89

    瀏覽量

    7108

原文標(biāo)題:神經(jīng)網(wǎng)絡(luò)RNN圖解!

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    模型推理顯存和計算量估計方法研究

    、顯存估計方法 基于模型結(jié)構(gòu)的顯存估計 根據(jù)深度學(xué)習(xí)模型的層次結(jié)構(gòu)和參數(shù)數(shù)量,可以估算模型在推理
    發(fā)表于 07-03 19:43

    深度學(xué)習(xí)模型在傳感器數(shù)據(jù)處理中的應(yīng)用(二):LSTM

    序列數(shù)據(jù)時遇到的梯度消失或梯度爆炸問題。標(biāo)準(zhǔn) RNN 在反向傳播過程中,由于鏈?zhǔn)椒▌t的應(yīng)用,梯度可能會在多層傳播中指數(shù)級地減?。ㄌ荻认В┗蛟龃螅ㄌ荻缺ǎ@使得網(wǎng)絡(luò)難以學(xué)習(xí)和記住長時間步的依賴關(guān)系。 ? ? 1.?遞歸神經(jīng)網(wǎng)絡(luò)(RNN
    的頭像 發(fā)表于 02-20 10:48 ?950次閱讀
    <b class='flag-5'>深度</b>學(xué)習(xí)<b class='flag-5'>模型</b>在傳感器數(shù)據(jù)處理中的應(yīng)用(二):LSTM

    【「大模型啟示錄」閱讀體驗】如何在客服領(lǐng)域應(yīng)用大模型

    地選擇適合的模型。不同的模型具有不同的特點和優(yōu)勢。在客服領(lǐng)域,常用的模型包括循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)、長短時記憶網(wǎng)絡(luò)(LSTM)、門控循環(huán)單元(GRU)、Transformer等,
    發(fā)表于 12-17 16:53

    RNN的損失函數(shù)與優(yōu)化算法解析

    函數(shù)有以下幾種: 交叉熵?fù)p失函數(shù) :交叉熵(Cross Entropy)是一種評估兩個概率分布之間差異的度量方法,即通過比較模型預(yù)測的概率分布和真實概率分布之間的差異,來評估模型訓(xùn)練的性能。在
    的頭像 發(fā)表于 11-15 10:16 ?1389次閱讀

    RNN在實時數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時代的到來,實時數(shù)據(jù)分析變得越來越重要。在眾多的機(jī)器學(xué)習(xí)模型中,遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks,簡稱RNN)因其在處理序列數(shù)據(jù)方面的優(yōu)勢,被廣泛應(yīng)用于實時數(shù)據(jù)
    的頭像 發(fā)表于 11-15 10:11 ?826次閱讀

    RNN的應(yīng)用領(lǐng)域及未來發(fā)展趨勢

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network, RNN)是一種適合于處理序列數(shù)據(jù)的深度學(xué)習(xí)模型。由于其獨特的循環(huán)結(jié)構(gòu),RNN
    的頭像 發(fā)表于 11-15 10:10 ?1442次閱讀

    RNN與LSTM模型的比較分析

    RNN(循環(huán)神經(jīng)網(wǎng)絡(luò))與LSTM(長短期記憶網(wǎng)絡(luò))模型深度學(xué)習(xí)領(lǐng)域都具有處理序列數(shù)據(jù)的能力,但它們在結(jié)構(gòu)、功能和應(yīng)用上存在顯著的差異。以下是對RN
    的頭像 發(fā)表于 11-15 10:05 ?2217次閱讀

    訓(xùn)練RNN時如何避免梯度消失

    在處理長序列數(shù)據(jù)時,RNN(循環(huán)神經(jīng)網(wǎng)絡(luò))模型可能會面臨梯度消失的問題,這是由于反向傳播過程中,由于連續(xù)的乘法操作,梯度會指數(shù)級地衰減,導(dǎo)致較早的時間步的輸入對較后時間步的梯度幾乎沒有影響,難以進(jìn)行
    的頭像 發(fā)表于 11-15 10:01 ?1023次閱讀

    RNN在圖片描述生成中的應(yīng)用

    輸入圖像的內(nèi)容。 RNN的基本原理 RNN是一種用于處理序列數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò),它通過循環(huán)結(jié)構(gòu)來處理序列中的每個元素,并保持前一個元素的信息。RNN的主要特點是它能夠處理任意長度的序列,并
    的頭像 發(fā)表于 11-15 09:58 ?954次閱讀

    深度學(xué)習(xí)中RNN的優(yōu)勢與挑戰(zhàn)

    循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是深度學(xué)習(xí)領(lǐng)域中處理序列數(shù)據(jù)的基石。它們通過在每個時間步長上循環(huán)傳遞信息,使得網(wǎng)絡(luò)能夠捕捉時間序列數(shù)據(jù)中的長期依賴關(guān)系。然而,盡管RNN在某些任務(wù)上表現(xiàn)出色,它們也面臨著一些
    的頭像 發(fā)表于 11-15 09:55 ?1321次閱讀

    RNN的基本原理與實現(xiàn)

    RNN,即循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network),是一種特殊類型的人工神經(jīng)網(wǎng)絡(luò),專門設(shè)計用于處理序列數(shù)據(jù),如文本、語音、視頻等。以下是對RNN基本原理與實現(xiàn)的介紹: 一
    的頭像 發(fā)表于 11-15 09:49 ?1432次閱讀

    如何使用RNN進(jìn)行時間序列預(yù)測

    時間序列預(yù)測在金融、氣象、銷售預(yù)測等領(lǐng)域有著廣泛的應(yīng)用。傳統(tǒng)的時間序列分析方法,如ARIMA和指數(shù)平滑,雖然在某些情況下表現(xiàn)良好,但在處理非線性和復(fù)雜模式時可能不夠靈活。遞歸神經(jīng)網(wǎng)絡(luò)(RNN)提供了
    的頭像 發(fā)表于 11-15 09:45 ?911次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋神經(jīng)網(wǎng)絡(luò))是兩種常見的類型。 2.
    的頭像 發(fā)表于 11-15 09:42 ?1125次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1208次閱讀

    幾種常見的控制方法及其優(yōu)缺點

    。 溫度控制系統(tǒng)是變參數(shù)、有時滯和隨機(jī)干擾的動態(tài)系統(tǒng),為達(dá)到滿意的控制效果,具有許多控制方法。故對幾種常見的控制方法及其優(yōu)缺點進(jìn)行了分析與比較。
    的頭像 發(fā)表于 11-09 09:57 ?3117次閱讀
    <b class='flag-5'>幾種</b>常見的控制方法及其<b class='flag-5'>優(yōu)缺點</b>