chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

CNN, RNN, GNN和Transformer模型的統(tǒng)一表示和泛化誤差理論分析

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來(lái)源:智能感知與物聯(lián)網(wǎng)技術(shù)研 ? 2024-12-06 11:31 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

背景介紹

51296732-b04a-11ef-93f3-92fbcf53809c.png

本文是基于我們之前的 RPN(Reconciled Polynomial Network)研究的后續(xù)工作。在此前的研究中,我們提出了 RPN 這一通用模型架構(gòu),其包含三個(gè)組件函數(shù):數(shù)據(jù)擴(kuò)展函數(shù)、參數(shù)調(diào)和函數(shù)和剩余函數(shù)。

我們先前的研究表明,RPN 在構(gòu)建不同復(fù)雜性、容量和完整性水平的模型方面具有很強(qiáng)的通用性,同時(shí)可以作為統(tǒng)一多種基礎(chǔ)模型(包括 PGM、核 SVM、MLP 和 KAN)的框架。

然而,先前的 RPN 模型基于以下假設(shè):訓(xùn)練批次中的數(shù)據(jù)實(shí)例是獨(dú)立同分布的。此外,在每個(gè)數(shù)據(jù)實(shí)例內(nèi)部,RPN 還假定所涉及的數(shù)據(jù)特征彼此獨(dú)立,并在擴(kuò)展函數(shù)中分別處理這些數(shù)據(jù)特征。

不過(guò),現(xiàn)實(shí)數(shù)據(jù)往往存在比較強(qiáng)的相互依賴關(guān)系,這種依賴關(guān)系既存在于樣本之間,也存在樣本內(nèi)部各個(gè)數(shù)據(jù)特征之間。

如上圖中 (a)-(d) 所示, 對(duì)于圖像、語(yǔ)言、時(shí)間序列和圖等復(fù)雜且具有相互依賴的數(shù)據(jù),這使得先前 RPN 模型的獨(dú)立假設(shè)不成立。如果像先前的 RPN 模型那樣忽略這些數(shù)據(jù)的相互依賴性,學(xué)習(xí)性能將顯著下降。

RPN 2 模型結(jié)構(gòu)

5135e6c4-b04a-11ef-93f3-92fbcf53809c.png

為了解決上面提到的問(wèn)題,在本文中,我們重新設(shè)計(jì)了 RPN 架構(gòu),提出了新的RPN 2(即Reconciled Polynomial Network 2.0)模型。如上圖中所示,RPN 2 引入了一個(gè)全新的組件——數(shù)據(jù)依賴函數(shù),用于顯式建模數(shù)據(jù)實(shí)例和數(shù)據(jù)特征之間的多種依賴關(guān)系。

這里需要解釋一下,雖然我們?cè)诒疚闹袑⒃摻M件稱為“依賴函數(shù)(interdependence function)”,但實(shí)際上,該函數(shù)捕獲了輸入數(shù)據(jù)中的多種關(guān)系,包括結(jié)構(gòu)性依賴、邏輯因果關(guān)系、統(tǒng)計(jì)相關(guān)性以及數(shù)值相似性或差異性等。

在模型架構(gòu)方面,如上圖所示,RPN 2由四個(gè)組成函數(shù)構(gòu)成:數(shù)據(jù)擴(kuò)展函數(shù)(data expansion function)、數(shù)據(jù)依賴函數(shù)(data interdependence function)、參數(shù)調(diào)和函數(shù)(parameter reconciliation function)、和余項(xiàng)函數(shù)(remainder function)。數(shù)據(jù)擴(kuò)展函數(shù):根據(jù)數(shù)據(jù)擴(kuò)展函數(shù)的定義,RPN 2 將數(shù)據(jù)向量從輸入空間投射到中間隱層(更高維度)空間,投射后的數(shù)據(jù)將由新空間中的新的基向量表示。數(shù)據(jù)依賴函數(shù):根據(jù)數(shù)據(jù)和底層模態(tài)結(jié)構(gòu)信息,RPN 2 將數(shù)據(jù)投射到依賴函數(shù)空間,投射后的數(shù)據(jù)分布能夠有效地獲取數(shù)據(jù)樣本和特征之間的相互依賴關(guān)系。參數(shù)調(diào)和函數(shù):為了應(yīng)對(duì)數(shù)據(jù)擴(kuò)展帶來(lái)的“維度災(zāi)難”問(wèn)題,RPN 2 中的參數(shù)調(diào)和函數(shù)將一組減少的參數(shù)合成為一個(gè)高階參數(shù)矩陣。這些擴(kuò)展的數(shù)據(jù)向量通過(guò)與這些生成的調(diào)和參數(shù)的內(nèi)積進(jìn)行多項(xiàng)式集成,從而將這些擴(kuò)展的數(shù)據(jù)向量投射回所需的低維輸出空間。余項(xiàng)函數(shù):此外,余數(shù)函數(shù)為 RPN 2 提供了額外的補(bǔ)充信息,以進(jìn)一步減少潛在的近似誤差。

RPN 2 深度和廣度的模型結(jié)構(gòu)

5148a624-b04a-11ef-93f3-92fbcf53809c.png

RPN 2 提供了靈活的模型設(shè)計(jì)和結(jié)構(gòu),并且允許用戶搭建不同深度和廣度的模型結(jié)構(gòu)。

上圖展示了 RPN 2 的多層(K層)架構(gòu),每一層包含多個(gè)頭部(multi-head)用于函數(shù)學(xué)習(xí),這些頭部的輸出將被融合在一起。右側(cè)子圖展示了 RPN 2 頭部的詳細(xì)架構(gòu),包括數(shù)據(jù)變換函數(shù)、多通道參數(shù)調(diào)和函數(shù)、余項(xiàng)函數(shù)及其內(nèi)部操作。

屬性和實(shí)例的相互依賴函數(shù)會(huì)計(jì)算相互依賴矩陣,該矩陣將應(yīng)用于輸入數(shù)據(jù)批次,位置可以是在數(shù)據(jù)變換函數(shù)之前或之后。虛線框內(nèi)黃色圓角矩形表示可選的數(shù)據(jù)處理函數(shù)(例如激活函數(shù)和歸一化函數(shù)),這些函數(shù)可作用于輸入、擴(kuò)展以及輸出數(shù)據(jù)。

多模態(tài)數(shù)據(jù)底層結(jié)構(gòu)和依賴函數(shù)

5156d97e-b04a-11ef-93f3-92fbcf53809c.png

本文還專門分析了幾種常見(jiàn)數(shù)據(jù)的底層模態(tài)結(jié)構(gòu),包括圖像、點(diǎn)云、語(yǔ)言、時(shí)序、和各類圖結(jié)構(gòu)數(shù)據(jù)。如下圖所示:

grid:圖像和點(diǎn)云表示為網(wǎng)格結(jié)構(gòu)數(shù)據(jù),其中節(jié)點(diǎn)表示像素和體素,連邊表示空間位置關(guān)系;

chain:語(yǔ)言和時(shí)間序列數(shù)據(jù)表示為鏈?zhǔn)浇Y(jié)構(gòu)數(shù)據(jù),其中節(jié)點(diǎn)表示詞元和數(shù)值,連邊表示順序關(guān)系;

graph:分子化合物和在線社交網(wǎng)絡(luò)表示為圖結(jié)構(gòu)數(shù)據(jù),其中節(jié)點(diǎn)表示原子和用戶,連邊表示化學(xué)鍵和社交連接。

4.1 圖像和點(diǎn)云數(shù)據(jù)幾何依賴函數(shù)

對(duì)于圖像和點(diǎn)云,每個(gè) pixel (或者 voxel)之間的依賴關(guān)系往往存在于圖像和點(diǎn)云數(shù)據(jù)的局部。換而言之,我們可以從輸入的圖像和點(diǎn)云數(shù)據(jù)中劃分出局部的 patch 結(jié)構(gòu),用來(lái)描述 pixel 和 voxel 之間的依賴范圍。

在傳統(tǒng)模型中,這種 patch 的形狀往往需要認(rèn)為定義,其形狀可以是cuboid shape,cylinder shape,sphere shape。而從 grid 中定義 pixel (或者 voxel)依賴范圍的過(guò)程可以表示為 patch packing 這一經(jīng)典幾何學(xué)問(wèn)題。

取決于 patch 的形狀,本文提出了多中 packing 的策略用來(lái)定義依賴函數(shù),以平衡獲取輸入數(shù)據(jù)信息的完整度和避免數(shù)據(jù)冗余。

515d7cf2-b04a-11ef-93f3-92fbcf53809c.png

4.2 語(yǔ)言和時(shí)序數(shù)據(jù)拓?fù)湟蕾嚭瘮?shù)

除了基于 grid 的幾何依賴函數(shù)之外,本文還介紹了基于 chain 和 graph 的拓?fù)湟蕾嚭瘮?shù)。鏈?zhǔn)浇Y(jié)構(gòu)依賴函數(shù)和多跳鏈?zhǔn)揭蕾嚭瘮?shù)主要用于建模數(shù)據(jù)中的順序依賴關(guān)系,這種關(guān)系廣泛存在于自然語(yǔ)言、基因序列、音頻記錄和股票價(jià)格等數(shù)據(jù)中。

基于序列數(shù)據(jù),本文定義了多種基于 chain 結(jié)構(gòu)的拓?fù)?single-hop 和 multi-hop 的依賴函數(shù)。其中 single-hop chain 結(jié)構(gòu)的拓?fù)湟蕾嚭瘮?shù)分為單向和雙向兩種。如下圖所示,單向依賴強(qiáng)調(diào)元素僅依賴于前一個(gè),而雙向依賴則考慮元素同時(shí)依賴于前后鄰居,從而捕捉更全面的上下文信息。

為了高效建模長(zhǎng)鏈數(shù)據(jù)中的多跳依賴關(guān)系,multi-hop chain 結(jié)構(gòu)的拓?fù)湟蕾嚭瘮?shù)引入了跳數(shù)(hop)參數(shù),直接描述鏈中某一元素與多跳范圍內(nèi)其他元素的信息交互。同時(shí),通過(guò)累積多跳函數(shù)聚合多個(gè)跳數(shù)的信息,進(jìn)一步擴(kuò)展了特征捕獲范圍。

516d9a7e-b04a-11ef-93f3-92fbcf53809c.png

4.3 圖結(jié)構(gòu)數(shù)據(jù)拓?fù)湟蕾嚭瘮?shù)

不僅如此,如下圖所示,本文還提出了基于 graph 結(jié)構(gòu)的拓?fù)湟蕾嚭瘮?shù)。圖結(jié)構(gòu)依賴函數(shù)和基于 PageRank 的圖結(jié)構(gòu)依賴函數(shù)旨在建模復(fù)雜數(shù)據(jù)之間的廣泛依賴關(guān)系,特別是以圖為基礎(chǔ)的數(shù)據(jù),如社交網(wǎng)絡(luò)、基因互動(dòng)網(wǎng)絡(luò)等。

在圖結(jié)構(gòu)依賴函數(shù)中,數(shù)據(jù)的依賴關(guān)系被表示為一個(gè)圖 G=(V,E),其中節(jié)點(diǎn)表示屬性或數(shù)據(jù)實(shí)例,邊表示它們之間的依賴關(guān)系,對(duì)應(yīng)的依賴矩陣 A 則是圖的鄰接矩陣?;谠搱D結(jié)構(gòu),函數(shù)通過(guò)矩陣運(yùn)算建模節(jié)點(diǎn)之間的多跳依賴關(guān)系,并引入累積多跳函數(shù)以整合多層次的信息交互。

進(jìn)一步地,基于 PageRank 的圖依賴函數(shù)利用圖的隨機(jī)游走思想,通過(guò)收斂矩陣高效地建模全局的長(zhǎng)距離依賴關(guān)系,并支持多種矩陣歸一化策略以增強(qiáng)計(jì)算的穩(wěn)定性和靈活性。

51772c88-b04a-11ef-93f3-92fbcf53809c.png

RPN 2 依賴函數(shù)列表

除了上述提到的依賴函數(shù)之外,本文還提出了多中依賴函數(shù)用來(lái)建模多種類型數(shù)據(jù)之間的依賴關(guān)系。通過(guò)有效地使用這些依賴函數(shù)和其他函數(shù),我們可以構(gòu)建更加有效的模型架構(gòu),使 RPN 2 能夠應(yīng)對(duì)廣泛的學(xué)習(xí)挑戰(zhàn)。

在本文中,我們總共提出了 9 大類,50 多種的數(shù)據(jù)依賴函數(shù),部分依賴函數(shù)的表示和基本信息都總結(jié)在了上面的列表中。

5194aa38-b04a-11ef-93f3-92fbcf53809c.png

深度學(xué)習(xí)模型的統(tǒng)一表示:CNN, RNN, GNN 和 Transformer

RPN 實(shí)現(xiàn)了豐富的功能函數(shù),具體列表如上圖所示。通過(guò)組合使用上述功能函數(shù),RPN 2 不僅可以構(gòu)建功能強(qiáng)大的模型結(jié)構(gòu),并且可以統(tǒng)一現(xiàn)有基礎(chǔ)模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。

519ebf0a-b04a-11ef-93f3-92fbcf53809c.png

51aafb4e-b04a-11ef-93f3-92fbcf53809c.png

實(shí)驗(yàn)驗(yàn)證

為了驗(yàn)證提出的 RPN 2 模型的有效性,本文通過(guò)大量的實(shí)驗(yàn)結(jié)果和分析,證明了 RPN 2 在多種 Function Learning Task 上的有效性。

在本文中,具體的實(shí)驗(yàn)任務(wù)包括:離散圖片和文本分類,時(shí)序數(shù)據(jù)預(yù)測(cè),和圖結(jié)構(gòu)數(shù)據(jù)學(xué)習(xí)等。7.1 離散圖片和文本分類在本文中,我們?cè)陔x散圖片和文本數(shù)據(jù)集上測(cè)試了 RPN 2 的實(shí)驗(yàn)效果,包括:

MNIST 圖片數(shù)據(jù)集

CIFAR10 圖片數(shù)據(jù)集

IMDB 文本數(shù)據(jù)集

SST2 文本數(shù)據(jù)集

AGNews 文本數(shù)據(jù)集

我們不僅跟先前的 RPN 1 模型進(jìn)行了對(duì)比,也和傳統(tǒng)的 MLP 和 CNN/RNN 模型進(jìn)行了對(duì)比,具體結(jié)果如下表所示:

51b83b92-b04a-11ef-93f3-92fbcf53809c.png

Note: 本文實(shí)驗(yàn)所使用的數(shù)據(jù)集,都沒(méi)有使用基于 flipping,rotation 等技術(shù)進(jìn)行數(shù)據(jù)增強(qiáng)。上表展示了各個(gè)方法在多個(gè)數(shù)據(jù)集上分類的 Accuracy score。

7.2 圖片數(shù)據(jù)依賴擴(kuò)展

對(duì)于圖片數(shù)據(jù),RPN 2 使用了基于 cylinder patch shape 的依賴函數(shù)。下圖也展示了部分圖片基于 RPN 2 所學(xué)得的數(shù)據(jù)表示,其中圖片中的每個(gè) pixel 都被擴(kuò)展成了一個(gè) cylinder patch shape,每個(gè) cylinder patch 包含了每個(gè) pixel 周圍的有效的 context 信息。

51c3d056-b04a-11ef-93f3-92fbcf53809c.png

7.3 時(shí)序數(shù)據(jù)預(yù)測(cè)

RPN 2 也可以有效地?cái)M合時(shí)序數(shù)據(jù),本文使用了四個(gè)時(shí)序數(shù)據(jù)集來(lái)驗(yàn)證 RPN 2 在時(shí)序數(shù)據(jù)擬合和預(yù)測(cè)的有效性,包括:

Stock market dataset

ETF market dataset

LA traffic record

Bay traffic record

如下表所示,通過(guò)使用 chain 結(jié)構(gòu)的依賴函數(shù),RPN 2 可以有效的獲取時(shí)序數(shù)據(jù)之間的依賴關(guān)系,并且在各個(gè)數(shù)據(jù)集上都獲得有效的學(xué)習(xí)結(jié)果。

51e04ce0-b04a-11ef-93f3-92fbcf53809c.png

Note: 上表中的結(jié)果是各個(gè)方法在幾個(gè)時(shí)序數(shù)據(jù)集上預(yù)測(cè)結(jié)果的 MSE。

圖結(jié)構(gòu)數(shù)據(jù)學(xué)習(xí)

為了驗(yàn)證 RPN 2 在圖結(jié)構(gòu)數(shù)據(jù)上的有效性,本文也提供了各個(gè)方法在 graph 結(jié)構(gòu)數(shù)據(jù)上的學(xué)習(xí)結(jié)果,包括:

Cora graph

Citeseer graph

Pubmed graph

如下表所示,基于 graph 依賴函數(shù)和復(fù)合依賴函數(shù)(包括 graph 和 bilinear 依賴函數(shù)),RPN 2 在多個(gè) graph 數(shù)據(jù)集上都可以獲得比 GCN 都優(yōu)的節(jié)點(diǎn)分類的結(jié)果。

51f0b940-b04a-11ef-93f3-92fbcf53809c.png

Note: 上表中的結(jié)果是各個(gè)方法在幾個(gè) graph 數(shù)據(jù)集上 node 分類結(jié)果的 Accuracy。

于RPN 2的模型泛化誤差分析

除了實(shí)驗(yàn)驗(yàn)證之外, 本文還提供了基于 RPN 2 的模型泛化誤差的理論分析,其分析結(jié)果對(duì)目前主流的深度模型(例如 CNN, RNN, GNN 和 Transformer)都適用。

本文的模型泛化誤差是基于給定的數(shù)據(jù)集 D 來(lái)進(jìn)行分析,其中 D 的一部分可以作為訓(xùn)練集用來(lái)進(jìn)行模型訓(xùn)練,我們可以定義模型產(chǎn)生的誤差項(xiàng)如下圖所示:

52003ab4-b04a-11ef-93f3-92fbcf53809c.png

本文中,模型泛化誤差是指 ,即模型在未見(jiàn)到的數(shù)據(jù)樣本上所產(chǎn)生的誤差和在訓(xùn)練數(shù)據(jù)樣本上產(chǎn)生的誤差的差別:

520b4c38-b04a-11ef-93f3-92fbcf53809c.png

9.1 基于VC-Dimension泛化誤差分析基于 RPN 2 的模型結(jié)構(gòu),我們定義了模型的 VC-Dimension 如下圖所示:

52190d78-b04a-11ef-93f3-92fbcf53809c.png

根據(jù)所獲得的 VC-Dimension 我們定義了 RPN 2 模型的泛化誤差如下圖所示:

5223af4e-b04a-11ef-93f3-92fbcf53809c.png

9.2 基于Rademacher Complexity泛化誤差分析

除了 VC-dimension 之外,我們還基于 Rademacher Complexity 理論分析了模型的泛化誤差。相比 VC-dimension,Rademacher Complexity 不僅僅考慮了 RPN 2 模型結(jié)構(gòu),還考慮了輸入數(shù)據(jù)對(duì)泛化誤差的影響。

基于提供的 RPN 2 模型,我們定義了模型 Rademacher Complexity 如下圖所示:

52279c58-b04a-11ef-93f3-92fbcf53809c.png

根據(jù)定義的 Rademacher Complexity,我們進(jìn)一步分析了 RPN 2 泛化誤差如下圖所示:

522b618a-b04a-11ef-93f3-92fbcf53809c.png

上述模型泛化誤差分析不僅僅可以從理論上解釋現(xiàn)有模型表現(xiàn)的區(qū)別,也為將來(lái)模型的設(shè)計(jì)提供了一下啟示,特別是針對(duì)依賴函數(shù)的設(shè)計(jì)。

RPN 2討論:優(yōu)點(diǎn),局限性,以及后續(xù)工作10.1 RPN 2優(yōu)點(diǎn)

本文通過(guò)引入建模屬性和實(shí)例間關(guān)系的數(shù)據(jù)依賴函數(shù),對(duì) RPN 2 模型架構(gòu)進(jìn)行了重新設(shè)計(jì)?;趯?shí)驗(yàn)結(jié)果和理論分析,所提出的依賴函數(shù)顯著提升了 RPN 2 模型在處理復(fù)雜依賴數(shù)據(jù)時(shí)的學(xué)習(xí)能力,具體貢獻(xiàn)包括以下三方面:

理論貢獻(xiàn):與假設(shè)數(shù)據(jù)獨(dú)立同分布的舊版模型不同,新設(shè)計(jì)的 RPN 2 模型通過(guò)一組基于輸入數(shù)據(jù)批次的依賴函數(shù),能夠有效捕捉屬性與實(shí)例之間的依賴關(guān)系,從而大幅擴(kuò)展模型的建模能力。

此外,本文提供的理論分析(基于 VC 維和 Rademacher 復(fù)雜度)展示了如何定義最優(yōu)依賴函數(shù)以減少泛化誤差。這些依賴函數(shù)還從生物神經(jīng)科學(xué)角度模擬了神經(jīng)系統(tǒng)的某些補(bǔ)償功能,為功能學(xué)習(xí)任務(wù)提供新的啟發(fā)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 函數(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    4405

    瀏覽量

    66797
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3645

    瀏覽量

    51685

原文標(biāo)題:大一統(tǒng)2.0!CNN, RNN, GNN和Transformer模型的統(tǒng)一表示和泛化誤差理論分析

文章出處:【微信號(hào):tyutcsplab,微信公眾號(hào):智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    Transformer如何讓自動(dòng)駕駛變得更聰明?

    ]自動(dòng)駕駛中常提的Transformer本質(zhì)上是種神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),最早在自然語(yǔ)言處理里火起來(lái)。與卷積神經(jīng)網(wǎng)絡(luò)(CNN)或循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)不同,
    的頭像 發(fā)表于 11-19 18:17 ?1868次閱讀

    構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議

    通過(guò)實(shí)踐,本文總結(jié)了構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議,這些建議將會(huì)在構(gòu)建高準(zhǔn)確率輕量級(jí)CNN神經(jīng)網(wǎng)絡(luò)模型方面提供幫助。 1)避免單層神
    發(fā)表于 10-28 08:02

    使用OpenVINO將PP-OCRv5模型部署在Intel顯卡上

    個(gè)用于優(yōu)化和部署人工智能(AI)模型,提升AI推理性能的開源工具集合,不僅支持以卷積神經(jīng)網(wǎng)絡(luò)(CNN)為核心組件的預(yù)測(cè)式AI模型(Predictive AI),還支持以
    的頭像 發(fā)表于 09-20 11:17 ?827次閱讀
    使用OpenVINO將PP-OCRv5<b class='flag-5'>模型</b>部署在Intel顯卡上

    自動(dòng)駕駛中Transformer模型會(huì)取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號(hào)]近年來(lái),隨著ChatGPT、Claude、文心言等大語(yǔ)言模型在生成文本、對(duì)話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)”這
    的頭像 發(fā)表于 08-13 09:15 ?3896次閱讀
    自動(dòng)駕駛中<b class='flag-5'>Transformer</b>大<b class='flag-5'>模型</b>會(huì)取代深度學(xué)習(xí)嗎?

    Transformer在端到端自動(dòng)駕駛架構(gòu)中是何定位?

    典型的Transformer架構(gòu)已被用于構(gòu)建“感知-規(guī)劃-控制統(tǒng)一建模”的方案。如Waymo和小馬智行正在研發(fā)的多模態(tài)大模型(MultimodalLargeModels,MLLMs),將來(lái)自攝像頭
    的頭像 發(fā)表于 08-03 11:03 ?1083次閱讀

    鯤云科技AI智能分析解決方案全新升級(jí)

    在人工智能應(yīng)用場(chǎng)景中,使用 CNN 類算法對(duì)視頻數(shù)據(jù)進(jìn)行檢測(cè)和分析已經(jīng)是常見(jiàn)的做法,但傳統(tǒng)智能監(jiān)控設(shè)備長(zhǎng)期面臨誤報(bào)率高、復(fù)雜場(chǎng)景能力不足等痛點(diǎn)。尤其在煙火、漏油/水、人員跌倒檢測(cè)等
    的頭像 發(fā)表于 06-16 17:15 ?1076次閱讀

    Transformer架構(gòu)中編碼器的工作流程

    編碼器是Transformer體系結(jié)構(gòu)的基本組件。編碼器的主要功能是將輸入標(biāo)記轉(zhuǎn)換為上下文表示。與早期獨(dú)立處理token的模型不同,Transformer編碼器根據(jù)整個(gè)序列捕獲每個(gè)to
    的頭像 發(fā)表于 06-10 14:27 ?809次閱讀
    <b class='flag-5'>Transformer</b>架構(gòu)中編碼器的工作流程

    WP4000變頻功率分析儀的精度表示與常規(guī)儀表精度表示方法有什么不同?

    目前,測(cè)量?jī)x器的精度表示方法般是“相對(duì)誤差”或者是“引用誤差”,相對(duì)來(lái)說(shuō)市面上采用“引用誤差表示
    的頭像 發(fā)表于 05-13 09:58 ?458次閱讀

    振弦式傳感器中量程誤差和絕對(duì)誤差表示什么意思?

    振弦式傳感器中量程誤差和絕對(duì)誤差表示什意思?在振弦式傳感器的性能指標(biāo)中,量程誤差和絕對(duì)誤差是評(píng)估傳感器測(cè)量精度的重要參數(shù)。今天南京峟思就對(duì)這
    的頭像 發(fā)表于 02-21 14:11 ?708次閱讀
    振弦式傳感器中量程<b class='flag-5'>誤差</b>和絕對(duì)<b class='flag-5'>誤差</b><b class='flag-5'>表示</b>什么意思?

    AI基礎(chǔ)模型提升癌癥診斷精確度,實(shí)現(xiàn)個(gè)性治療方案定制

    斯坦福大學(xué)研究人員正在通過(guò)項(xiàng)新研究和個(gè)新 AI 模型簡(jiǎn)化癌癥診斷、治療規(guī)劃和預(yù)后預(yù)測(cè)。這項(xiàng)名為“多模態(tài)統(tǒng)一掩碼建模 Transformer
    的頭像 發(fā)表于 02-11 09:22 ?1200次閱讀
    AI基礎(chǔ)<b class='flag-5'>模型</b>提升癌癥診斷精確度,實(shí)現(xiàn)個(gè)性<b class='flag-5'>化</b>治療方案定制

    如何使用MATLAB構(gòu)建Transformer模型

    Transformer 模型在 2017 年由 Vaswani 等人在論文《Attentionis All You Need》中首次提出。其設(shè)計(jì)初衷是為了解決自然語(yǔ)言處理(Nature
    的頭像 發(fā)表于 02-06 10:21 ?5703次閱讀
    如何使用MATLAB構(gòu)建<b class='flag-5'>Transformer</b><b class='flag-5'>模型</b>

    種新的通用視覺(jué)主干模型Vision Mamba

    CNNTransformer常作為深度學(xué)習(xí)模型的首選基礎(chǔ)模塊,被應(yīng)用于各種場(chǎng)景,如文本、視覺(jué)、語(yǔ)音信號(hào)處理及其各種下游應(yīng)用。然而這兩個(gè)基礎(chǔ)模塊都有著其固有而互補(bǔ)的缺陷:CNN具有固定
    的頭像 發(fā)表于 01-06 09:55 ?2240次閱讀
    <b class='flag-5'>一</b>種新的通用視覺(jué)主干<b class='flag-5'>模型</b>Vision Mamba

    transformer專用ASIC芯片Sohu說(shuō)明

    的舊圖像模型,也不能運(yùn)行CNN、RNN或LSTM。 但對(duì)于transformer來(lái)說(shuō),Sohu是有史以來(lái)最快的芯片。 借助Llama 70B每秒超過(guò)50萬(wàn)個(gè)token的吞吐量,Sohu
    的頭像 發(fā)表于 01-06 09:13 ?1661次閱讀
    <b class='flag-5'>transformer</b>專用ASIC芯片Sohu說(shuō)明

    仿真分析誤差來(lái)源及減少建模誤差的方法

    、建模誤差 建模誤差是仿真分析中最常見(jiàn)的誤差來(lái)源之。它主要源于物理系統(tǒng)與其數(shù)學(xué)
    的頭像 發(fā)表于 12-24 09:52 ?2596次閱讀
    仿真<b class='flag-5'>分析</b><b class='flag-5'>誤差</b>來(lái)源及減少建模<b class='flag-5'>誤差</b>的方法

    【「大模型啟示錄」閱讀體驗(yàn)】如何在客服領(lǐng)域應(yīng)用大模型

    地選擇適合的模型。不同的模型具有不同的特點(diǎn)和優(yōu)勢(shì)。在客服領(lǐng)域,常用的模型包括循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)、長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)、門控循環(huán)單元(GRU)、
    發(fā)表于 12-17 16:53