chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何在訓(xùn)練過程中正確地把數(shù)據(jù)輸入給模型

XILINX開發(fā)者社區(qū) ? 來源:XILINX開發(fā)者社區(qū) ? 作者:XILINX開發(fā)者社區(qū) ? 2021-07-01 10:47 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)中一個(gè)常見問題是判定與數(shù)據(jù)交互的最佳方式。

在本文中,我們將提供一種高效方法,用于完成數(shù)據(jù)的交互、組織以及最終變換(預(yù)處理)。隨后,我們將講解如何在訓(xùn)練過程中正確地把數(shù)據(jù)輸入給模型。

PyTorch 框架將幫助我們實(shí)現(xiàn)此目標(biāo),我們還將從頭開始編寫幾個(gè)類。PyTorch 可提供更完整的原生類,但創(chuàng)建我們自己的類可幫助我們加速學(xué)習(xí)。

第 1 部分:原始數(shù)據(jù)和數(shù)據(jù)集

首先我們把尚未經(jīng)過組織的所有樣本稱為“原始數(shù)據(jù)”。

把“數(shù)據(jù)集”定義為現(xiàn)成可用的數(shù)據(jù),即含標(biāo)簽以及基本函數(shù)接口(以便于使用原始數(shù)據(jù)信息)的原始數(shù)據(jù)。

此處我們使用一種簡(jiǎn)單的原始數(shù)據(jù)形式:1 個(gè)包含圖像和標(biāo)簽的文件夾。

但此方法可擴(kuò)展至任意性質(zhì)的樣本(可以是圖片、錄音、視頻等)以及包含標(biāo)簽的文件。

標(biāo)簽文件中的每一行都用于描述 1 個(gè)樣本和相關(guān)標(biāo)簽,格式如下:

file_sample_1 label1

file_sample_2 label2

file_sample_3 label3

(。。。)

當(dāng)能夠完成一些基本信息查詢(已有樣本數(shù)量、返回特定編號(hào)的樣本、預(yù)處理每個(gè)樣本等)時(shí),說明我們已從原始數(shù)據(jù)集創(chuàng)建了 1 個(gè)數(shù)據(jù)集。

此方法基于面向?qū)ο?a href="http://www.brongaenegriffin.com/v/tag/1315/" target="_blank">編程以及創(chuàng)建用于數(shù)據(jù)處理的 “類”。

對(duì)于一組簡(jiǎn)單的圖像和標(biāo)簽而言,此方法可能看上去略顯殺雞用牛刀(實(shí)際上,此用例通常是通過創(chuàng)建分別用于訓(xùn)練、驗(yàn)證和測(cè)試的獨(dú)立文件夾來進(jìn)行處理的)。但如果要選擇標(biāo)準(zhǔn)交互方法,則此方法將來可復(fù)用于多種不同用例,以節(jié)省時(shí)間。

Python 中處理數(shù)據(jù)

在 Python 中所有一切都是對(duì)象:整數(shù)、列表、字典都是如此。

構(gòu)建含標(biāo)準(zhǔn)屬性和方法的“數(shù)據(jù)集”對(duì)象的原因多種多樣。我認(rèn)為,代碼的精致要求就足以合理化這一選擇,但我理解這是品味的問題??梢浦残?、速度和代碼模塊化可能是最重要的原因。

在許多示例以及編碼書籍中,我發(fā)現(xiàn)了面向?qū)ο蟮木幋a(尤以類為甚)的其它有趣的功能和優(yōu)勢(shì),總結(jié)如下:

? 類可提供繼承

? 繼承可提供復(fù)用

? 繼承可提供數(shù)據(jù)類型擴(kuò)展

? 繼承支持多態(tài)現(xiàn)象

? 繼承是面向?qū)ο蟮木幋a的特有功能

■輸入 [1]:

import torch

from torchvision import transforms

to_tensor = transforms.ToTensor()

from collections import namedtuple

import functools

import copy

import csv

from PIL import Image

from matplotlib import pyplot as plt

import numpy as np

import os

import datetime

import torch.optim as optim

在我們的示例中,所有原始樣本都存儲(chǔ)在文件夾中。此文件夾的地址在 raw_data_path 變量中聲明。

■輸入 [2]:

raw_data_path = ‘。/raw_data/data_images’

構(gòu)建模塊

數(shù)據(jù)集接口需要一些函數(shù)和類。數(shù)據(jù)集本身就是一個(gè)對(duì)象,因此我們將創(chuàng)建 MyDataset 類來包含所有重要函數(shù)和變量。

首先,我們需要讀取標(biāo)簽文件,然后可對(duì)樣本在其原始格式(此處為 PIL 圖像)以及最終的張量格式應(yīng)用某些變換。

我們需要使用以下函數(shù)來讀取 1 次標(biāo)簽文件,然后創(chuàng)建包含所有樣本名稱和標(biāo)簽的元組。

內(nèi)存中緩存可提升性能,但如果標(biāo)簽文件發(fā)生更改,請(qǐng)務(wù)必更新緩存內(nèi)容。

■ 輸入 [113]:

DataInfoTuple = namedtuple(‘Sample’,‘SampleName, SampleLabel’)

def myFunc(e):

return e.SampleLabel

# in memory caching decorator: ref https://dbader.org/blog/python-memoization

@functools.lru_cache(1)

def getSampleInfoList(raw_data_path):

sample_list = []

with open(str(raw_data_path) + ‘/labels.txt’, mode = ‘r’) as f:

reader = csv.reader(f, delimiter = ‘ ’)

for i, row in enumerate(reader):

imgname = row[0]

label = int(row[1])

sample_list.append(DataInfoTuple(imgname, label))

sample_list.sort(reverse=False, key=myFunc)

# print(“DataInfoTouple: samples list length = {}”.format(len(sample_list)))

return sample_list

如需直接變換 PIL 圖像,那么以下類很實(shí)用。

該類僅含 1 種方法:resize。resize 方法能夠改變 PIL 圖像的原始大小,并對(duì)其進(jìn)行重新采樣。如需其它預(yù)處理(翻轉(zhuǎn)、剪切、旋轉(zhuǎn)等),需在此類種添加方法。

當(dāng) PIL 圖像完成預(yù)處理后,即可將其轉(zhuǎn)換為張量。此外還可對(duì)張量執(zhí)行進(jìn)一步的處理步驟。

在以下示例種,可以看到這兩種變換:

■ 輸入 [4]:

class PilTransform():

“”“generic transformation of a pil image”“”

def resize(self, img, **kwargs):

img = img.resize(( kwargs.get(‘width’), kwargs.get(‘height’)), resample=Image.NEAREST)

return img

# creation of the object pil_transform, having all powers inherited by the class PilTransform

pil_transform = PilTransform()

以下是類 PilTransform 的實(shí)操示例:

■ 輸入 [5]:

path = raw_data_path + “/img_00000600.JPEG”

print(path)

im1 = Image.open(path, mode=‘r’)

plt.imshow(im1)

。/raw_data/data_images/img_00000600.JPEG

■ 輸出 [5]:

《matplotlib.image.AxesImage at 0x121046f5588》

■ 輸入 [6]:

im2 = pil_transform.resize(im1, width=128, height=128)

# im2.show()

plt.imshow(im2)

■ 輸出 [6]:

《matplotlib.image.AxesImage at 0x12104b36358》

最后,我們定義一個(gè)類,用于實(shí)現(xiàn)與原始數(shù)據(jù)的交互。

類 MyDataset 主要提供了 2 個(gè)方法:

__len__ 可提供原始樣本的數(shù)量。

__getitem__ 可使對(duì)象變?yōu)榭傻愋停磸埩扛袷椒祷卣?qǐng)求的樣本(已完成預(yù)處理)。

__getitem__ 步驟:

1) 打開來自文件的樣本。

2) 按樣本的原始格式對(duì)其進(jìn)行預(yù)處理。

3) 將樣本變換為張量。

4) 以張量格式對(duì)樣本進(jìn)行預(yù)處理。

此處添加的預(yù)處理僅作為示例。

此類可對(duì)張量進(jìn)行歸一化(求平均值和標(biāo)準(zhǔn)差),這有助于加速訓(xùn)練過程。

請(qǐng)注意,PIL 圖像由范圍 0-255 內(nèi)的整數(shù)值組成,而張量則為范圍 0-1 內(nèi)的浮點(diǎn)數(shù)矩陣。

該類會(huì)返回包含兩個(gè)元素的列表:在位置 [0] 返回張量,在位置 [1] 返回包含 SampleName 和 SampleLabel 的命名元組。

■ 輸入 [109]:

class MyDataset():

“”“Interface class to raw data, providing the total number of samples in the dataset and a preprocessed item”“”

def __init__(self,

isValSet_bool = None,

raw_data_path = ‘。/’,

SampleInfoList = DataInfoTuple,norm = False,

resize = False,

newsize = (32, 32)

):

self.raw_data_path = raw_data_path

self.SampleInfoList = copy.copy(getSampleInfoList(self.raw_data_path))

self.isValSet_bool = isValSet_bool

self.norm = norm

self.resize = resize

self.newsize = newsize

def __str__(self):

return ‘Path of raw data is ’ + self.raw_data_path + ‘/’ + ‘《raw samples》’

def __len__(self):

return len(self.SampleInfoList)

def __getitem__(self, ndx):

SampleInfoList_tup = self.SampleInfoList[ndx]

filepath = self.raw_data_path + ‘/’ + str(SampleInfoList_tup.SampleName)

if os.path.exists(filepath):

img = Image.open(filepath)

# PIL image preprocess (examples)

#resize

if self.resize:

width, height = img.size

if (width 》= height) & (self.newsize[0] 》= self.newsize[1]):

img = pil_transform.resize(img, width=self.newsize[0], height=self.newsize[1])

elif (width 》= height) & (self.newsize[0] 《 self.newsize[1]):

img = pil_transform.resize(img, width=self.newsize[1], height=self.newsize[0])

elif (width 《 height) & (self.newsize[0] 《= self.newsize[1]):

img = pil_transform.resize(img, width=self.newsize[0], height=self.newsize[1])

elif (width 《 height) & (self.newsize[0] 》 self.newsize[1]):

img = pil_transform.resize(img, width=self.newsize[1], height=self.newsize[0])

else:

print(“ERROR”)

# from pil image to tensor

img_t = to_tensor(img)

# tensor preprocess (examples)

#rotation

ratio = img_t.shape[1]/img_t.shape[2]

if ratio 》 1:

img_t = torch.rot90(img_t, 1, [1, 2])

#normalization requires the knowledge of all tensors

if self.norm:

img_t = normalize(img_t)

#return img_t, SampleInfoList_tup

return img_t, SampleInfoList_tup.SampleLabel

else:

print(‘[WARNING] file {} does not exist’.format(str(SampleInfoList_tup.SampleName)))

return None

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8501

    瀏覽量

    134563
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1224

    瀏覽量

    25434
  • PIL
    PIL
    +關(guān)注

    關(guān)注

    0

    文章

    19

    瀏覽量

    8821
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    809

    瀏覽量

    13940

原文標(biāo)題:開發(fā)者分享 | 利用 Python 和 PyTorch 處理面向?qū)ο蟮臄?shù)據(jù)集:1. 原始數(shù)據(jù)和數(shù)據(jù)集

文章出處:【微信號(hào):gh_2d1c7e2d540e,微信公眾號(hào):XILINX開發(fā)者社區(qū)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何正確地進(jìn)行信號(hào)放大

    晶體管和運(yùn)放都可以放大信號(hào),但到底什么是信號(hào)放大,以及如何正確地進(jìn)行信號(hào)放大。在學(xué)習(xí)電子設(shè)計(jì)的過程中,我從未在微控制器和邏輯門的世界里遇到過什么困難。但模擬電路是一個(gè)不同的故事;有好一陣子,我只能
    的頭像 發(fā)表于 04-15 11:52 ?510次閱讀
    如何<b class='flag-5'>正確地</b>進(jìn)行信號(hào)放大

    MIMXRT1176如何在MBDT中正確實(shí)現(xiàn)自定義LUT?

    (peripherals.c peripherals.h),但我注意到它們?cè)诰幾g時(shí)被覆蓋了。 如何在 MBDT 中正確實(shí)現(xiàn)自定義 LUT?此外,有沒有辦法修改默認(rèn) LUT 而不在編譯期間重置它?
    發(fā)表于 04-08 07:56

    請(qǐng)問如何在imx8mplus上部署和運(yùn)行YOLOv5訓(xùn)練模型

    。我在 yo tflite 中轉(zhuǎn)換模型并嘗試在 tensorflow 腳本上運(yùn)行模型,但它不起作用。 如何在 imx8mplus 上運(yùn)行 YOLOv5 模型? 在 imx8mplus
    發(fā)表于 03-25 07:23

    數(shù)據(jù)標(biāo)注服務(wù)—奠定大模型訓(xùn)練數(shù)據(jù)基石

    數(shù)據(jù)標(biāo)注是大模型訓(xùn)練過程中不可或缺的基礎(chǔ)環(huán)節(jié),其質(zhì)量直接影響著模型的性能表現(xiàn)。在大模型訓(xùn)練中,
    的頭像 發(fā)表于 03-21 10:30 ?724次閱讀

    標(biāo)貝數(shù)據(jù)標(biāo)注服務(wù):奠定大模型訓(xùn)練數(shù)據(jù)基石

    數(shù)據(jù)標(biāo)注是大模型訓(xùn)練過程中不可或缺的基礎(chǔ)環(huán)節(jié),其質(zhì)量直接影響著模型的性能表現(xiàn)。在大模型訓(xùn)練中,
    的頭像 發(fā)表于 03-21 10:27 ?560次閱讀
    標(biāo)貝<b class='flag-5'>數(shù)據(jù)</b>標(biāo)注服務(wù):奠定大<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>的<b class='flag-5'>數(shù)據(jù)</b>基石

    是否可以輸入隨機(jī)數(shù)據(jù)集來生成INT8訓(xùn)練后量化模型?

    無法確定是否可以輸入隨機(jī)數(shù)據(jù)集來生成 INT8 訓(xùn)練后量化模型
    發(fā)表于 03-06 06:45

    模型訓(xùn)練:開源數(shù)據(jù)與算法的機(jī)遇與挑戰(zhàn)分析

    進(jìn)行多方位的總結(jié)和梳理。 在第二章《TOP 101-2024 大模型觀點(diǎn)》中,蘇州盛派網(wǎng)絡(luò)科技有限公司創(chuàng)始人兼首席架構(gòu)師蘇震巍分析了大模型訓(xùn)練過程中開源數(shù)據(jù)集和算法的重要性和影響,分析
    的頭像 發(fā)表于 02-20 10:40 ?601次閱讀
    大<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>:開源<b class='flag-5'>數(shù)據(jù)</b>與算法的機(jī)遇與挑戰(zhàn)分析

    用PaddleNLP在4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)

    手把手教您如何在單張消費(fèi)級(jí)顯卡上,利用PaddleNLP實(shí)踐OpenAI的GPT-2模型的預(yù)訓(xùn)練。GPT-2的預(yù)訓(xùn)練關(guān)鍵技術(shù)與流程與GPT-4等大參數(shù)
    的頭像 發(fā)表于 02-19 16:10 ?988次閱讀
    用PaddleNLP在4060單卡上實(shí)踐大<b class='flag-5'>模型</b>預(yù)<b class='flag-5'>訓(xùn)練</b>技術(shù)

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個(gè)階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型的步驟: 一、前向傳播 前向傳播
    的頭像 發(fā)表于 02-12 15:10 ?896次閱讀

    騰訊公布大語言模型訓(xùn)練新專利

    大語言模型訓(xùn)練過程中引入第一摘要文本和第二摘要文本,為模型提供了更為豐富的學(xué)習(xí)信息。這兩個(gè)摘要文本在信息量上存在差異,且第一摘要文本中既包含正確語句也包含錯(cuò)誤語句。這一設(shè)計(jì)使得
    的頭像 發(fā)表于 02-10 09:37 ?397次閱讀

    GPU是如何訓(xùn)練AI大模型

    在AI模型訓(xùn)練過程中,大量的計(jì)算工作集中在矩陣乘法、向量加法和激活函數(shù)等運(yùn)算上。這些運(yùn)算正是GPU所擅長(zhǎng)的。接下來,AI部落小編帶您了解GPU是如何訓(xùn)練AI大模型的。
    的頭像 發(fā)表于 12-19 17:54 ?731次閱讀

    如何訓(xùn)練ai大模型

    源 :從可靠的來源獲取數(shù)據(jù),如公開數(shù)據(jù)集、內(nèi)部數(shù)據(jù)庫或第三方數(shù)據(jù)提供商。 2. 數(shù)據(jù)清洗 去除重復(fù)數(shù)據(jù)
    的頭像 發(fā)表于 10-17 18:17 ?2591次閱讀

    何在應(yīng)用中正確設(shè)置THVD1505和SN65HVD888

    電子發(fā)燒友網(wǎng)站提供《如何在應(yīng)用中正確設(shè)置THVD1505和SN65HVD888.pdf》資料免費(fèi)下載
    發(fā)表于 09-18 10:25 ?0次下載
    如<b class='flag-5'>何在</b>應(yīng)用<b class='flag-5'>中正確</b>設(shè)置THVD1505和SN65HVD888

    FP8模型訓(xùn)練中Debug優(yōu)化思路

    目前,市場(chǎng)上許多公司都積極開展基于 FP8 的大模型訓(xùn)練,以提高計(jì)算效率和性能。在此,我們整理并總結(jié)了客戶及 NVIDIA 技術(shù)團(tuán)隊(duì)在 FP8 模型訓(xùn)練過程中的 debug 思路和方法
    的頭像 發(fā)表于 09-06 14:36 ?906次閱讀
    FP8<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>中Debug優(yōu)化思路

    AI訓(xùn)練的基本步驟

    AI(人工智能)訓(xùn)練是一個(gè)復(fù)雜且系統(tǒng)的過程,它涵蓋了從數(shù)據(jù)收集到模型部署的多個(gè)關(guān)鍵步驟。以下是對(duì)AI訓(xùn)練過程的詳細(xì)闡述,包括每個(gè)步驟的具體內(nèi)
    的頭像 發(fā)表于 07-17 16:57 ?5234次閱讀