chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

戰(zhàn)斗機嵌入式訓練系統中的智能虛擬陪練

li1234567890123 ? 來源:li1234567890123 ? 作者:li1234567890123 ? 2022-02-16 10:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

戰(zhàn)斗機嵌入式訓練系統中的智能虛擬陪練

摘智能化“實虛”對抗是現代先進戰(zhàn)斗機嵌入式訓練系統的重要功能需求。自主空戰(zhàn)決策控制技術在未來空戰(zhàn)裝備發(fā)展中扮演關鍵角色。將當前的功能需求和發(fā)展中的技術結合起來,得到了空戰(zhàn)智能虛擬陪練的概念。先進控制決策技術的引入使得智能虛擬陪練能夠幫助飛行員完成復雜的戰(zhàn)術訓練,而訓練中真實的對抗場景為技術的驗證提供了理想的環(huán)境,大量的訓練數據為技術的持續(xù)迭代優(yōu)化提供了保障。作為可學習和進化的空戰(zhàn)戰(zhàn)術專家,智能陪練在人機對抗和自我對抗中不斷優(yōu)化,當其具備與人相當甚至超越人的戰(zhàn)術能力時,可應用于未來的無人空戰(zhàn)系統。智能虛擬陪練需要具備4項基本能力:智能決策能力、知識學習能力、對抗自優(yōu)化能力和參數化表示能力。對其包含的關鍵技術進行了分析,提出并實現了一個基于模糊推理、神經網絡和強化學習的解決方案,展示了其各項基本能力及目前達到的空戰(zhàn)水平。未來更多的模型和算法可在智能虛擬陪練的框架中進行驗證和優(yōu)化。

現代戰(zhàn)斗機裝備的嵌入式訓練系統一般有“實對實”訓練和“實對虛”訓練2種模式[1]。其中“實對實”訓練是最接近實戰(zhàn)的模式,但占用資源多,組織難度大,且存在“假想敵”扮演逼真度有限的問題?!皩崒μ摗庇柧毻ㄟ^計算機生成數字虛擬目標,可以對“假想敵”的平臺、武器和傳感器性能進行模擬,能夠根據訓練需要生成任意的交戰(zhàn)場景,從而有效提高空戰(zhàn)訓練的針對性,擴大訓練覆蓋面,提升訓練效率[2]。

空戰(zhàn)戰(zhàn)術訓練要求虛擬目標具備一定的智能水平[3]。通過建立空戰(zhàn)規(guī)則庫和戰(zhàn)術庫,賦予虛擬目標基本的戰(zhàn)術響應能力,使“實”、“虛”之間可以進行簡單的對抗[4-5]。通過將空戰(zhàn)戰(zhàn)法分解為時序動作,可以實現對某些特定戰(zhàn)法的模擬[6]。進一步提高虛擬目標的智能水平,實現更復雜更有針對性的戰(zhàn)術演練,是嵌入式訓練系統的客觀需求[7-8]。

拋開具體的訓練場景,將虛擬目標視作一個獨立的空戰(zhàn)智能體,虛擬目標智能化所需解決的核心問題即為自主空戰(zhàn)的決策與控制。而以實現無人機自主空戰(zhàn)為目標,國內外進行了各類研究探索[9-11]。其中常用的模型包括影響圖[12-13]、矩陣博弈[14]、微分對策[15]、動態(tài)規(guī)劃[16-18]、模糊推理[19-23]、貝葉斯網絡[24-25]等。這些模型大體上可以分為2類,一類是通過建立各式各樣的“優(yōu)勢函數”,將空戰(zhàn)問題轉化為優(yōu)化問題求解;另一類則是模仿人類思維過程建立基于規(guī)則的模型?;凇皟?yōu)勢函數”的模型為保證其可解性,一般將空戰(zhàn)問題大幅簡化,采用的“優(yōu)勢函數”大多欠缺嚴格的物理依據,或者忽略了空戰(zhàn)中的重要約束(如中距導彈的中制導過程),導致其實用價值有限?;谝?guī)則的模型在處理簡單戰(zhàn)術的時候較為合適,但隨著輸入參數和戰(zhàn)術選擇的增多,遭遇到維數爆炸問題。

隨著近年來深度學習引領的人工智能技術的又一次大爆發(fā)[26-27],自主空戰(zhàn)決策控制的研究有了新的突破方向?;谏窠浘W絡和強化學習的模型開始進入研究人員的視線,在解決空戰(zhàn)機動決策[28-32]、路徑規(guī)劃[33]和目標分配[34]等方面初步顯示了其能力。機器學習算法帶來了新的方向,同時也暴露了該領域研究存在的客觀問題??諔?zhàn)對抗非零和的數學本質決定了先驗知識對模型的重要性[35],機器學習算法本身也需要大量的數據作為基礎,而先進戰(zhàn)斗機之間的空戰(zhàn)對抗數據目前多產生于航空兵部隊的內部訓練中,研發(fā)人員不易接觸[36];基于各類機器學習技術的模型需要一個持續(xù)的迭代優(yōu)化過程,而機載軟件的安全性要求決定了其不能頻繁更換;在各類簡化環(huán)境下訓練得到的模型在真實對抗中的性能有待檢驗。

結合虛擬目標智能化提升和自主空戰(zhàn)技術發(fā)展2方面的需求,本文提出智能虛擬陪練的概念。智能虛擬陪練,是具備自主決策控制能力的空戰(zhàn)戰(zhàn)術訓練虛擬對手,及其自主空戰(zhàn)能力學習進化支持體系。其依托于機載嵌入式訓練系統,此外還有配套的維護和開發(fā)系統。不同于目前的虛擬目標,智能虛擬陪練不再是為完成某些特定訓練情景任務而設計,而是具備完整獨立的空戰(zhàn)決策和控制能力,在幫助飛行員訓練的同時自身也在不斷進化。

通過引入自主空戰(zhàn)決策控制技術,使智能虛擬陪練能夠滿足復雜空戰(zhàn)戰(zhàn)術演練的需求;通過賦予智能虛擬陪練監(jiān)督學習能力,使其能夠學習“假想敵”戰(zhàn)術特點,從而滿足針對性訓練需要;通過對嵌入式訓練系統記錄的對抗數據的整理分析,為模型的機器學習提供先驗知識和優(yōu)化訓練樣本;通過賦予智能虛擬陪練對抗優(yōu)化能力,使其能夠在“人機”對抗和機器自對抗中不斷進化;通過實現核心模型的便捷配置,為模型算法的快速迭代提供途徑。

智能虛擬陪練不僅是未來嵌入式訓練系統“實虛對抗”功能(如圖1所示)的重要組成,還是自主空戰(zhàn)決策控制技術迭代優(yōu)化和實驗驗證的重要工具,是空戰(zhàn)訓練和新技術研發(fā)耦合進步的紐帶,為下一步從虛擬走向真實,從陪練走向主角打下基礎。

1 智能虛擬陪練的能力需求

智能虛擬陪練的運行場景如圖2所示。智能虛擬陪練不僅要實現嵌入式訓練系統實虛對抗的智能化,還要實現其自主空戰(zhàn)能力的不斷進化。智能虛擬陪練的基本能力要求包括以下3項。

1.1 智能戰(zhàn)術決策和控制

智能虛擬陪練能夠根據任務目標(奪取制空權、要地防守、區(qū)域突襲等),綜合考慮交戰(zhàn)雙方的平臺性能(機動性能、滯空時間、隱身性能等)、武器性能(武器射程、導引頭截獲距離、命中概率等)和傳感器性能(探測距離范圍和角度范圍),對空中態(tài)勢做出快速合理的戰(zhàn)術響應。其機動動作的控制應為實現相應機動目的的最優(yōu)或次優(yōu)解。

與專家經驗和戰(zhàn)術資料不同,空戰(zhàn)對抗演習數據中沒有顯式的規(guī)則,需要用相應的識別算法挖掘出其中的戰(zhàn)術決策知識。

1.2 空戰(zhàn)戰(zhàn)術對抗優(yōu)化

經過對空戰(zhàn)先驗知識的學習,智能虛擬陪練可以具備基本的空戰(zhàn)能力。人機對抗和機器自對抗可以進一步優(yōu)化模型和提升戰(zhàn)術水平。人機對抗,既包括空戰(zhàn)專家在模擬器上與智能虛擬陪練的對抗,也包括飛行員在空中進行的實虛對抗訓練。對抗數據可存入數據庫用于模型的自動優(yōu)化。

機器自對抗是智能虛擬陪練自動優(yōu)化的重要手段。通過采用大規(guī)模并行計算等手段,機器自對抗可在較短時間內積累大量的對抗數據。通過機器自對抗,不僅可以對監(jiān)督訓練得到的戰(zhàn)術決策模型進行調整優(yōu)化,還可以自動探索空戰(zhàn)戰(zhàn)術,發(fā)現未被人發(fā)現和使用過的戰(zhàn)術。

1.3 核心模型參數化表示

智能虛擬陪練的核心決策控制模型實現參數化表示,可通過軟件配置文件加載,從而實現模型的便捷更換。對用戶來說,根據訓練任務的不同,可以靈活選擇決策控制模型。對研發(fā)方來說,智能虛擬陪練的決策控制模型一直處于訓練優(yōu)化的進程中,在得到階段性成果后即可快速投入測試和使用。

2 智能虛擬陪練的關鍵技術

按照上述基本能力要求,可以得到智能虛擬陪練的基本功能邏輯,進一步可以將智能虛擬陪練進行詳細的功能劃分,如圖3所示。

智能虛擬陪練分為應用端和開發(fā)維護端。應用端由傳感器模擬、決策控制核心模型、武器接口模擬和飛機平臺模擬4個部分組成。決策控制核心模型包含態(tài)勢計算、決策計算和戰(zhàn)術控制計算3個模塊。開發(fā)和維護端包含先驗規(guī)則庫、基于規(guī)則的決策控制模型,參數化決策控制模型,以及對抗運行環(huán)境。

2.1 應用端關鍵技術

2.1.1 態(tài)勢計算

態(tài)勢計算一直是空戰(zhàn)決策控制研究的重點問題,常用的模型包括指標體系[37]、D-S證據理論[38]、貝葉斯網絡[39]等。近年來基于神經網絡的態(tài)勢評估方法也不斷出現[40-41]。智能虛擬陪練的態(tài)勢計算要求必須考慮交戰(zhàn)雙方的平臺、武器和傳感器性能。目前常用的主觀構建的各類優(yōu)勢函數,普遍缺乏對性能因素的定量考慮。建立基于空戰(zhàn)物理規(guī)律的態(tài)勢評估模型,是實現空戰(zhàn)智能決策控制所需解決的首要問題。

2.1.2 決策計算

以空中敵我運動參數,我方平臺狀態(tài)、武器狀態(tài)、傳感器狀態(tài),以及態(tài)勢計算得到的角色任務、目標威脅度、我方導彈命中概率等參數為輸入,進行戰(zhàn)術決策計算。

決策計算的實現有2種思路。一種是“推演”式決策。決策模型在決策過程中,需要同時模擬雙方的戰(zhàn)術響應進行多步推演,根據推演的結果進行戰(zhàn)術選擇。AlfaGo等棋類人工智能使用的MCTS[42]算法即為典型的“推演”式決策;另一類則是“反應式”決策,也即決策模型是決策輸入到輸出的直接映射,決策計算一步完成。本質上“反應式”決策模型是一個從態(tài)勢輸入到最優(yōu)響應戰(zhàn)術的函數。目前空戰(zhàn)領域研究的多為“反應式”決策模型?!巴蒲菔健睕Q策的理論研究是一個值得期待的方向。

在使用復雜機器學習算法時,需要考慮機載嵌入式環(huán)境的硬件資源限制。

2.1.3 戰(zhàn)術控制計算

戰(zhàn)術控制包括飛機平臺機動控制、武器控制和傳感器控制?,F代先進戰(zhàn)斗機配備放寬靜穩(wěn)定電傳飛控系統。為發(fā)揮飛機最大的機動性能,在飛控系統內設計高級戰(zhàn)術機動動作庫,戰(zhàn)術決策輸出則為動作選擇。每一個戰(zhàn)術機動都設有其優(yōu)化目標和限制條件,飛控系統基于此求解最優(yōu)控制策略。高級戰(zhàn)術機動包含的要素如表1所示。

傳感器的輻射狀態(tài)、工作模式和搜索區(qū)域是重要的戰(zhàn)術控制對象。武器則是發(fā)射流程和發(fā)射模式需要控制。

2.1.4 傳感器模擬

為了提高智能虛擬陪練的逼真度,各類傳感器的數字模型需要對其性能參數和工作邏輯進行模擬。例如,雷達有搜索模式和跟蹤模式的區(qū)別,搜索范圍受框架角限制[43],存在速度過零現象等。

2.2 開發(fā)維護端關鍵技術

2.2.1 從專家經驗、戰(zhàn)術資料中識別戰(zhàn)術規(guī)則

從專家和戰(zhàn)術資料的自然語言表述中,識別出決策模型適用的空戰(zhàn)戰(zhàn)術規(guī)則,一般即為“IF-THEN”形式。

2.2.2 從對抗數據中識別戰(zhàn)術規(guī)則

嵌入式訓練系統記錄的對抗數據,需要進行時空對準、航跡關聯等操作后,才能轉化為信息完備的空中交戰(zhàn)態(tài)勢。從交戰(zhàn)中飛行員駕駛飛機的運動參數和狀態(tài)變化,識別其采取了什么戰(zhàn)術(智能虛擬陪練則是直接記錄了戰(zhàn)術決策過程),這樣才能得到“IF-THEN”形式的規(guī)則。

2.2.3 基于規(guī)則的決策模型產生參數化決策模型

基于規(guī)則的模型便于建立,參數化模型則便于進行自動優(yōu)化和模型配置。由規(guī)則模型訓練參數化模型已證明可行[44]。另一種思路則是將規(guī)則模型本身參數化,如美國某公司提出的進化模糊推理系統[23,45],其中對模糊推理系統的隸屬度函數和規(guī)則都進行了參數化。

2.2.4 智能虛擬陪練自對抗優(yōu)化

近年來引起廣泛關注的AlfaGo[42]、AlfaGo Zero[46]、AlfaStar模型等展現了基于深度強化學習的智能體的強大的自對抗優(yōu)化能力。美國某公司則號稱其使用遺傳算法優(yōu)化模糊推理樹,實現了超越專家飛行員的空戰(zhàn)水平[23,45],其核心也是模型自對抗。智能虛擬陪練的自對抗優(yōu)化,不僅能實現對先驗知識的優(yōu)化,還可以充分挖掘既有戰(zhàn)術庫的潛能,甚至創(chuàng)造目前沒有的空戰(zhàn)策略。此外,通過自對抗優(yōu)化,智能虛擬陪練能夠自動適應平臺、武器或傳感器性能的變化,使其具備高度的各向兼容性。

2.2.5 對抗運行環(huán)境

智能虛擬陪練自對抗需要在高速并行計算環(huán)境下運行,除了硬件平臺的支持,模型算法也需要適配[47-48]。

3 智能虛擬陪練的解決方案

3.1 解決方案

為驗證上述智能虛擬陪練功能邏輯合理性和相關關鍵技術的可行性,本文提出了一個初步解決方案并進行了實驗驗證。下面介紹方案的關鍵技術和實驗驗證情況。圖4為這個方案的應用端部分,其中決策計算部分包含模糊推理和神經網絡2個模型,在不同的階段需要使用不同的模型。

3.1.1 傳感器和武器

傳感器層包括了紅外告警和雷達、雷達告警的仿真模型。各模型中除引入了各項性能限制外,還加入了重要的工作邏輯,如雷達搜索和跟蹤模式的切換等。武器為中距導彈。其仿真模型包括發(fā)動機推力模型、導彈氣動模型和導引頭模型。

3.1.2 態(tài)勢計算

在態(tài)勢計算方面,拋棄了傳統的基于主觀賦權或優(yōu)勢函數的態(tài)勢評估方法,以平臺、武器和傳感器性能為依據,按照空戰(zhàn)物理原理建立了空戰(zhàn)態(tài)勢評估模型。態(tài)勢評估模型的典型輸出示例如表2所示。

在這個解決方案中,態(tài)勢計算模塊除對單機交戰(zhàn)態(tài)勢進行評估計算,還可以完成編隊角色分配和目標分配的計算工作。

3.1.3 空戰(zhàn)戰(zhàn)術庫和規(guī)則庫

以超視距空戰(zhàn)為研究對象,分析和整理了經典的超視距空戰(zhàn)戰(zhàn)術,構建了戰(zhàn)術動作庫,如表3所示。以人工方式識別專家經驗和戰(zhàn)術資料中的戰(zhàn)術規(guī)則,構建了戰(zhàn)術規(guī)則庫。共得到10種戰(zhàn)術動作,60條 戰(zhàn)術規(guī)則。為每一個戰(zhàn)術動作設計相應的控制律,將其封裝成高級戰(zhàn)術動作控制器

3.1.4 模糊推理戰(zhàn)術決策模型

在規(guī)則庫和戰(zhàn)術庫的基礎上,建立一個模糊推理戰(zhàn)術決策模型[23]。對模糊推理模型進行了參數化改造,使其推理規(guī)則、模糊隸屬度函數等均可以進行參數化表示,如圖5所示(編碼“0”表示該項輸入/輸出未被引用)。將隸屬度函數的各個關鍵點用其坐標來表示,調節(jié)關鍵點坐標即可完成對隸屬度函數的調節(jié)。任意一條規(guī)則包含其引用的輸入和輸出,以及各項輸入輸出的語義值。將模糊推理系統涉及的所有輸入和輸出按序編碼,對語義也作編碼處理,就可以簡單的實現對規(guī)則的參數化表達。

通過調節(jié)推理規(guī)則和模糊隸屬度函數參數,使決策模型的響應與規(guī)則庫中的經驗知識基本一致。

使用配置該模型的紅藍雙方進行模擬對抗,對抗場景和雙方的武器配置隨機生成,記錄紅藍雙方各自的決策輸入和輸出。以實驗中的一次模型生成周期中的數據為例,紅藍對抗得到總計2 204場的對抗數據,對應4 408架次的模型決策序列。

3.1.5 神經網路戰(zhàn)術決策模型

模糊推理模型相互對抗產生的數據為參數化模型的建立提供了初始樣本。建立了一個BP神經網絡模型。網絡結構為輸入30維,輸出10維,2隱層,網絡權值參數總量為1 541。用上述對抗數據對其進行有監(jiān)督訓練。隨后使用該模型組織紅藍模擬對抗,對抗裁決器根據交戰(zhàn)結果分別給予紅藍雙方獎勵或懲罰。神經網絡決策模型使用記錄的對抗過程數據和最后的獎懲進行強化學習,實現模型優(yōu)化,決策模型生成過程如圖6所示。對抗優(yōu)化過程的實現參考文獻[47-48]中的深度學習神經網絡(DQN)算法。這里沒有使用文獻[47-48]中的深度卷積神經網絡,這是由于在此問題中,決策輸入是由傳感器輸出和態(tài)勢計算輸出組成的一維狀態(tài)向量,而不是卷積神經網絡擅長處理的二維圖像信息。

在DQN處理的棋類和電視游戲中,決策通常是從一個相對固定的初始狀態(tài)開始的。而在實際空戰(zhàn)中,交戰(zhàn)初始條件,包括雙方的初始態(tài)勢和初始武器配置,是在一定范圍內隨機的。棋類游戲中雙方初始態(tài)勢為均衡,而空戰(zhàn)決策模型必須能夠處理初始態(tài)勢非均衡的交戰(zhàn)問題。這就使得初始條件對交戰(zhàn)結果的影響在對抗優(yōu)化中不可忽略。如圖7所示,初始已經處于絕對劣勢的一方,無論作出何種戰(zhàn)術決策,都會被擊落。在這種情況下,仍直接按照勝獎敗懲的原理給予決策模型反饋,強化學習算法將難以收斂。

這里采取了一種“主-客”機制來解決這個問題:雙方完成一次對抗后,互換初始條件,綜合2場對抗的結果來進行獎懲,以消除初始態(tài)勢的影響。在圖7中,假設擊落獎勵1,被擊落獎勵-1,否則獎勵0。采用2場獎勵平均的方法進行綜合。那么在互換態(tài)勢前后,雙方相互擊落一次,因此各自得到獎勵為0。而如果有一方能夠在處于劣勢時不被擊落,那么綜合2場結果其將被獎勵0.5,對方則獎勵-0.5。

3.1.6 性能評估

選擇空戰(zhàn)交換比作為決策模型性能的評估標準。交換比定義為一方被擊落次數與擊落對方次數的比。

3.2 基本能力驗證

第1節(jié)所述4項基本能力中,參數化表示能力已由模型的本身特性確保,另外3項需要進行實驗驗證。

3.2.1 先驗知識學習能力

神經網絡模型在完成對2 204場對抗數據的學習后,其決策輸出與模糊推理模型輸出的對比如圖8所示。可以看出,神經網絡輸出在保持其趨勢和模糊推理模型基本一致的基礎上,反復震蕩的現象明顯減少了。在完成有監(jiān)督訓練后,神經網絡模型對模糊推理模型的交換比為1∶1.16。這顯示了神經網絡完全掌握了模糊推理規(guī)則庫中的先驗知識。同時由于其克服了模糊推理模型輸出震蕩的問題,性能略有提升。

進一步的,在具體的仿真對抗場景下驗證智能虛擬陪練對戰(zhàn)術規(guī)則的掌握情況。對抗中紅藍雙方使用相同版本的決策模型。

1) 三代機對三代機基本戰(zhàn)術

圖9中紅藍雙方均為三代機平臺,傳感器武器配置相同。雙方初始態(tài)勢為均勢(同高度同速度),迎頭進入空戰(zhàn)。雙方各自躲掉前2發(fā)導彈(第2發(fā)圖中未顯示),在此過程中雙方持續(xù)下降高度,武器射程縮短,雙方距離逐漸縮小。紅方最后掉頭時機不當被擊落。紅藍雙方為同版本模型但決策出現差異的原因在于對抗中存在隨機擾動因素,包括傳感器探測誤差和決策模型的戰(zhàn)術隨機探索。從這里可以看出,在平臺、傳感器和武器性能相同且初始態(tài)勢一致的前提下,決定空戰(zhàn)勝負的即是決策的細微差異。圖10展示了雙方從第2次攻擊到對抗結束的決策輸出。在實際的三代機超視距空戰(zhàn)中,適時置尾規(guī)避敵機導彈,再回轉繼續(xù)攻擊,是常見且合理的戰(zhàn)術。

2) 三代機對四代機基本戰(zhàn)術

圖11中紅方為三代機平臺,藍方為四代機平臺。藍方具有隱身優(yōu)勢。雙方初始態(tài)勢為均勢,迎頭進入空戰(zhàn)。藍方先發(fā)現紅方。紅方在收到雷達告警后,開始做切向機動,破壞藍方跟蹤的同時逼近藍方,成功規(guī)避藍方第1發(fā)導彈。最終紅方逼近到雷達可以發(fā)現藍方的距離,雙方相互攻擊,紅方因開火時間晚先被擊落,但其導彈已對藍方構成致命威脅。圖12展示了雙方對抗全程的決策輸出。三代機利用雷達的過零現象逼近四代機,是不多的可以取得一定效果的戰(zhàn)術選擇。

通過仿真對抗實驗可以看出,智能虛擬陪練掌握了不同平臺性能配置下的基本超視距空戰(zhàn)戰(zhàn)術,其戰(zhàn)術響應合理正確,與已知的空戰(zhàn)經驗知識基本符合。

3.2.2 對抗自優(yōu)化能力

在神經網絡完成第1輪1 291場對抗優(yōu)化后,對模糊推理模型的交換比提高到1∶2.73。在完成第2輪765場對抗優(yōu)化后,對模糊推理模型的交換比提高到1∶3.6。交換比的提高顯示了自對抗對神經網絡模型的優(yōu)化效果。

3.2.3 智能決策綜合能力

構建復雜對抗場景,對解決方案中的態(tài)勢計算和決策模型進行更全面的能力驗證。這里以雙機編隊和單機的對抗作為仿真實驗場景。

紅藍雙方均為三代機平臺,傳感器和武器配備相同。紅方為雙機編隊,1號機前突,2號 機掩護。紅方1號機和藍方飛機相互攻擊。在導彈逼近到危險距離后,雙方開始機動規(guī)避。此時紅方2號機加速前突進行攻擊占位。紅方1號 機和藍方飛機各自成功規(guī)避導彈后開始掉頭。此時紅方1號機處于掩護位置,紅方2號機處于前突位置,紅方編隊完成了角色輪轉。藍方飛機掉頭后遭到紅方2號機導彈攻擊,不得不再次機動規(guī)避。此時紅方2號機繼續(xù)加速前突。在藍方規(guī)避掉導彈后,紅方2號機在超音速狀態(tài)下再次發(fā)射導彈。由于距離近,導彈初速高,藍方未能規(guī)避被擊落。此時紅方1號機也已到達攻擊發(fā)起位置,準備下一輪攻擊。

在這個對抗過程中,態(tài)勢計算模塊進行了正確合理的角色和任務分配,戰(zhàn)術決策模型在正確合理的時機選擇了導彈發(fā)射、置尾規(guī)避和回轉進攻等戰(zhàn)術動作,顯示了智能虛擬陪練在復雜對抗場景下具備較好的戰(zhàn)術決策能力。

該解決方案驗證了前面提出的智能虛擬陪練的功能邏輯和開發(fā)維護流程的合理性,證明了其中主要關鍵技術的可行性。此驗證方案中使用的規(guī)則庫和戰(zhàn)術庫內容較少,神經網絡規(guī)模較小,未使用并行計算,未實現規(guī)則的自動識別。模型裝機后得到人機對抗數據,其中智能虛擬陪練的決策記錄可直接供神經網絡模型回放強化學習,人的決策過程數據仍需要進行人工識別。

智能虛擬陪練的核心,也即空戰(zhàn)戰(zhàn)術決策和控制,是一個在迅速發(fā)展的研究熱點,各類模型算法,只要符合前面提出的基本功能要求,都可以通過智能虛擬陪練進行驗證和迭代。

4 從智能虛擬陪練到自主空戰(zhàn)

從智能虛擬陪練到自主空戰(zhàn)(如圖14所示),主要是從傳感器、武器和飛機平臺仿真模型,到真實的傳感器、武器和飛機平臺接口。智能虛擬陪練的決策和控制模型,則可以直接應用到無人自主空戰(zhàn)系統中。無人自主空戰(zhàn)系統,既可以在現有有人機平臺上改裝,也可以是專門研制的制空型無人機。智能虛擬陪練的自對抗優(yōu)化能力,使其能夠適應平臺的變化。無論是哪一類平臺,智能虛擬陪練的意義在于,使這些無人自主空戰(zhàn)系統快速具備與人類飛行員相當甚至更好的戰(zhàn)術決策和控制能力,使其綜合作戰(zhàn)效能得到提升。

5 結 論

本文提出的智能虛擬陪練,既是空戰(zhàn)訓練發(fā)展的客觀需求,又是自主空戰(zhàn)技術實驗驗證的工具。拋開具體的有限的訓練情景,把智能虛擬陪練視作具有完全自主能力的空戰(zhàn)智能體,分析了其基本能力要求,得到其4項基本能力,即智能決策能力、學習能力、對抗自優(yōu)化能力和參數化表示的能力。據此設計了智能虛擬陪練的功能邏輯,并識別出了其中的關鍵技術。其中,基于規(guī)則的決策模型可以用來訓練參數化模型,而參數化模型進行自對抗優(yōu)化。以模糊推理模型、神經網絡模型和強化學習算法實現了一個初步的智能虛擬陪練解決方案,實驗表明其能夠滿足4項基本能力要求,在不同平臺配置和不同場景下均能進行合理的戰(zhàn)術決策和控制。未來自主空戰(zhàn)領域的新模型、新算法,均可在智能虛擬陪練的框架下,按照4項基本能力的要求進行實驗驗證和迭代優(yōu)化。

審核編輯:湯梓紅

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2576

    文章

    54808

    瀏覽量

    789284
  • 嵌入式
    +關注

    關注

    5194

    文章

    20284

    瀏覽量

    331822
  • 戰(zhàn)斗機

    關注

    1

    文章

    135

    瀏覽量

    15963
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    什么是嵌入式應用開發(fā)?

    、實現和部署,還包括硬件選擇、軟件設計、測試、集成和維護等流程?。 定義和背景 嵌入式應用開發(fā)是指將軟件部署到嵌入式系統,這些系統廣泛
    發(fā)表于 01-12 16:13

    嵌入式系統的人工智能

    等領域,讓這些領域的設備能夠實時學習、適應并做出決策。然而,人工智能的發(fā)展也讓網絡安全威脅愈發(fā)普遍,這些安全隱患必須得到解決。英偉達等科技企業(yè)率先在嵌入式系統
    的頭像 發(fā)表于 12-18 11:49 ?904次閱讀
    <b class='flag-5'>嵌入式</b><b class='flag-5'>系統</b><b class='flag-5'>中</b>的人工<b class='flag-5'>智能</b>

    C語言單元測試在嵌入式軟件開發(fā)的作用及專業(yè)工具的應用

    語言使用率超過90%。從智能家居溫控系統到汽車ECU控制單元,從工業(yè)機器人到醫(yī)療設備,C語言仍然是嵌入式開發(fā)的首選語言。 C語言在嵌入式開發(fā)
    發(fā)表于 12-18 11:46

    什么是嵌入式操作系統

    、嵌入式操作系統的定義 嵌入式操作系統是專門為資源受限的嵌入式設備(比如 STM32 單片、
    發(fā)表于 12-09 10:33

    C語言在嵌入式開發(fā)的應用

    嵌入式設備能夠與外部網絡進行通信,實現數據傳輸和信息共享。 在智能家居、工業(yè)物聯網、智能交通等領域,嵌入式網絡編程的應用無處不在。在智能家居
    發(fā)表于 11-21 08:09

    嵌入式系統的定義和應用領域

    嵌入式系統,簡而言之,就是一種專為特定設備或裝置設計的計算機系統。它們通常配備一個嵌入式處理器,其控制程序被存儲在ROM。這些
    發(fā)表于 11-17 06:49

    嵌入式開發(fā)的關鍵點介紹

    : 許多嵌入式系統需要在實時環(huán)境運行,例如工業(yè)控制和航空航天應用。因此,嵌入式開發(fā)需要考慮系統的實時性能,并確保
    發(fā)表于 11-13 08:12

    嵌入式工控:工業(yè)自動化的核心運算單元

    在工業(yè)自動化、智能制造、智能交通等領域,嵌入式工控作為“工業(yè)大腦”,承擔著數據采集、邏輯運算、設備控制等關鍵任務。它并非普通商用電腦的工業(yè)版,而是基于
    的頭像 發(fā)表于 11-04 15:50 ?419次閱讀
    <b class='flag-5'>嵌入式</b>工控<b class='flag-5'>機</b>:工業(yè)自動化的核心運算單元

    Linux嵌入式和單片嵌入式的區(qū)別?

    Linux嵌入式與單片嵌入式在多個方面存在顯著的區(qū)別,以下是詳細的比較和歸納: 一、基本概念 1. Linux嵌入式: 定義:將Linux操作
    發(fā)表于 06-20 09:46

    嵌入式單片在電機控制系統的應用

    長時間處于良好的工作狀態(tài),其穩(wěn)定性也得到了顯著的提升。嵌入式單片在電機控制系統的應用可以分為軟件應用和硬件應用,硬件提供基本的物理框架支撐,軟件提供基本的信息、數據處理渠道,也只有
    發(fā)表于 06-11 15:07

    嵌入式開發(fā)入門指南:從零開始學習嵌入式

    隨著物聯網、智能硬件的發(fā)展,嵌入式開發(fā)成為熱門技能之一。以下將為初學者提供一份詳細的嵌入式開發(fā)入門指南,涵蓋學習路徑、必備工具、推薦資源等內容。 1. 嵌入式
    發(fā)表于 05-15 09:29

    逆向工程 拆解F-4戰(zhàn)斗機的三軸姿態(tài)指示儀

    Ken Shirriff 大佬逆向工程了 F-4 戰(zhàn)斗機的三軸姿態(tài)指示儀。
    的頭像 發(fā)表于 04-28 11:18 ?1.4w次閱讀
    逆向工程 拆解F-4<b class='flag-5'>戰(zhàn)斗機</b>的三軸姿態(tài)指示儀

    Python在嵌入式系統的應用場景

    你想把你的職業(yè)生涯提升到一個新的水平?Python在嵌入式系統中正在成為一股不可缺少的新力量。盡管傳統上嵌入式開發(fā)更多地依賴于C和C++語言,Python的優(yōu)勢在于其簡潔的語法、豐富的庫和快速的開發(fā)周期,這使得它在某些
    的頭像 發(fā)表于 03-19 14:10 ?1367次閱讀

    嵌入式系統的代碼優(yōu)化與壓縮技術

    在當今數字化時代,嵌入式系統廣泛應用于各個領域,從智能家居設備到工業(yè)控制系統,從汽車電子到可穿戴設備,它們無處不在。而在嵌入式
    發(fā)表于 02-26 15:00

    【入門必看】從菜鳥到大牛,嵌入式系統完整學習路線!看這篇就夠了!

    嵌入式系統是許多現代電子設備和智能系統的核心,掌握嵌入式系統,意味著能夠設計和開發(fā)更加
    的頭像 發(fā)表于 02-20 10:53 ?3767次閱讀
    【入門必看】從菜鳥到大牛,<b class='flag-5'>嵌入式</b><b class='flag-5'>系統</b>完整學習路線!看這篇就夠了!