chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何使用框架訓(xùn)練網(wǎng)絡(luò)加速深度學(xué)習(xí)推理

星星科技指導(dǎo)員 ? 來源:NVIDIA ? 作者:Houman,Yu-Te Cheng, ? 2022-04-01 15:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

TensorRT 7.0 開始, Universal Framework Format( UFF )被棄用。在本文中,您將學(xué)習(xí)如何使用新的 TensorFlow -ONNX- TensorRT 工作流部署經(jīng)過 TensorFlow 培訓(xùn)的深度學(xué)習(xí)模型。圖 1 顯示了 TensorRT 的高級工作流。

pYYBAGJGrYaAOHdwAADOhwG6fXc468.png

圖 1 。 TensorRT 是一種推理加速器。

首先,使用任何框架訓(xùn)練網(wǎng)絡(luò)。網(wǎng)絡(luò)訓(xùn)練后,批量大小和精度是固定的(精度為 FP32 、 FP16 或 INT8 )。訓(xùn)練好的模型被傳遞給 TensorRT 優(yōu)化器,優(yōu)化器輸出一個優(yōu)化的運行時(也稱為計劃)。。 plan 文件是 TensorRT 引擎的序列化文件格式。計劃文件需要反序列化才能使用 TensorRT 運行時運行推斷。

要優(yōu)化在 TensorFlow 中實現(xiàn)的模型,只需將模型轉(zhuǎn)換為 ONNX 格式,并使用 TensorRT 中的 ONNX 解析器解析模型并構(gòu)建 TensorRT 引擎。圖 2 顯示了高級 ONNX 工作流。

pYYBAGJGrYyAFfa6AAAwQkoylqI526.jpg

圖 2 。 ONNX 工作流。

在本文中,我們將討論如何使用 ONNX 工作流創(chuàng)建一個 TensorRT 引擎,以及如何從 TensorRT 引擎運行推理。更具體地說,我們演示了從 Keras 或 TensorFlow 中的模型到 ONNX 的端到端推理,以及使用 ResNet-50 、語義分段和 U-Net 網(wǎng)絡(luò)的 TensorRT 引擎。最后,我們將解釋如何在其他網(wǎng)絡(luò)上使用此工作流。

下載 TensorFlow -onnx- TensorRT 后 – 代碼 tar 。 gz 文件,您還應(yīng)該從 Cityscapes dataset scripts repo 下載 labels.py ,并將其與其他腳本放在同一個文件夾中。

ONNX 概述

ONNX 是機器學(xué)習(xí)和深度學(xué)習(xí)模型的開放格式。它允許您將不同框架(如 TensorFlow 、 PyTorch 、 MATLAB 、 Caffe 和 Keras )的深度學(xué)習(xí)和機器學(xué)習(xí)模型轉(zhuǎn)換為單一格式。

它定義了一組通用的運算符、深入學(xué)習(xí)的通用構(gòu)建塊集和通用文件格式。它提供計算圖的定義以及內(nèi)置運算符??赡苡幸粋€或多個輸入或輸出的 ONNX 節(jié)點列表形成一個無環(huán)圖。

ResNet ONNX 工作流示例

在這個例子中,我們展示了如何在兩個不同的網(wǎng)絡(luò)上使用 ONNX 工作流并創(chuàng)建一個 TensorRT 引擎。第一個網(wǎng)絡(luò)是 ResNet-50 。

工作流包括以下步驟:

將 TensorFlow / Keras 模型轉(zhuǎn)換為。 pb 文件。

將。 pb 文件轉(zhuǎn)換為 ONNX 格式。

創(chuàng)建 TensorRT 引擎。

從 TensorRT 引擎運行推斷。

將模型轉(zhuǎn)換為。 pb

第一步是將模型轉(zhuǎn)換為。 pb 文件。以下代碼示例將 ResNet-50 模型轉(zhuǎn)換為。 pb 文件:

pYYBAGJGroSAHXTkAAA3M58TYgE971.png

poYBAGJGro6Aas16AAA1y0oqBWA160.png

除了 Keras ,您還可以從以下位置下載 ResNet-50 :

深度學(xué)習(xí)示例 GitHub 存儲庫:提供最新的深度學(xué)習(xí)示例網(wǎng)絡(luò)。您還可以看到 ResNet-50 分支,它包含一個腳本和方法來訓(xùn)練 ResNet-50v1 。 5 模型。

NVIDIA NGC 型號 :它有預(yù)訓(xùn)練模型的檢查點列表。例如,在 ResNet-50v1 。 5 上搜索 TensorFlow ,并從 Download 頁面獲取最新的檢查點。

將。 pb 文件轉(zhuǎn)換為 ONNX

第二步是將。 pb 模型轉(zhuǎn)換為 ONNX 格式。為此,首先安裝 tf2onnx 。

安裝 tf2onnx 后,有兩種方法可以將模型從。 pb 文件轉(zhuǎn)換為 ONNX 格式。第二種方法是使用命令行。運行以下命令:

poYBAGJGrp6AauNjAAAJUsSVoZg886.png

從 ONNX 創(chuàng)建 TensorRT 引擎

要從 ONNX 文件創(chuàng)建 TensorRT 引擎,請運行以下命令:

poYBAGJGrsCAchTgAAA9Ld7RNrs608.png

pYYBAGJGrsqAO8PKAAAC-dmKx7E317.png

此代碼應(yīng)保存在引擎。 py 文件,稍后在文章中使用。

此代碼示例包含以下變量:

最大工作區(qū)大?。?在執(zhí)行時 ICudaEngine 可以使用的最大 GPU 臨時內(nèi)存。

構(gòu)建器創(chuàng)建一個空網(wǎng)絡(luò)( builder.create_network() ), ONNX 解析器將 ONNX 文件解析到網(wǎng)絡(luò)( parser.parse(model.read()) )。您可以為網(wǎng)絡(luò)( network.get_input(0).shape = shape )設(shè)置輸入形狀,然后生成器將創(chuàng)建引擎( engine = builder.build_cuda_engine(network) )。要創(chuàng)建引擎,請運行以下代碼示例:

pYYBAGJGruGAMPXuAAAtUQcqcpk628.png

在這個代碼示例中,首先從 ONNX 模型獲取輸入形狀。接下來,創(chuàng)建引擎,然后將引擎保存在。 plan 文件中。

運行來自 TensorRT 引擎的推理:

TensorRT 引擎在以下工作流中運行推理:

為 GPU 中的輸入和輸出分配緩沖區(qū)。

將數(shù)據(jù)從主機復(fù)制到 GPU 中分配的輸入緩沖區(qū)。

在 GPU 中運行推理。

將結(jié)果從 GPU 復(fù)制到主機。

根據(jù)需要重塑結(jié)果。

下面的代碼示例詳細(xì)解釋了這些步驟。此代碼應(yīng)保存在推理。 py 文件,稍后將在本文中使用。

poYBAGJGrviAfprXAAA-GEWQnbE980.png

pYYBAGJGrv-AK8KsAABG5Zo7Tiw771.png

pYYBAGJGrweAehrVAAA6DPqzQCU341.png

為第一個輸入行和輸出行確定兩個維度。您可以在主機( h_input_1 、 h_output )中創(chuàng)建頁鎖定內(nèi)存緩沖區(qū)。然后,為輸入和輸出分配與主機輸入和輸出相同大小的設(shè)備內(nèi)存( d_input_1 , d_output )。下一步是創(chuàng)建 CUDA 流,用于在設(shè)備和主機分配的內(nèi)存之間復(fù)制數(shù)據(jù)。

在這個代碼示例中,在 do_inference 函數(shù)中,第一步是使用 load_images_to_buffer 函數(shù)將圖像加載到主機中的緩沖區(qū)。然后將輸入數(shù)據(jù)傳輸?shù)?GPU ( cuda.memcpy_htod_async(d_input_1, h_input_1, stream) ),并使用 context.execute 運行推理。最后將結(jié)果從 GPU 復(fù)制到主機( cuda.memcpy_dtoh_async(h_output, d_output, stream) )。

ONNX 工作流語義分割實例

在本文 基于 TensorRT 3 的自主車輛快速 INT8 推理 中,作者介紹了一個語義分割模型的 UFF 工作流過程。

在本文中,您將使用類似的網(wǎng)絡(luò)來運行 ONNX 工作流來進(jìn)行語義分段。該網(wǎng)絡(luò)由一個基于 VGG16 的編碼器和三個使用反褶積層實現(xiàn)的上采樣層組成。網(wǎng)絡(luò)在 城市景觀數(shù)據(jù)集 上經(jīng)過大約 40000 次迭代訓(xùn)練

有多種方法可以將 TensorFlow 模型轉(zhuǎn)換為 ONNX 文件。一種方法是 ResNet50 部分中解釋的方法。 Keras 也有自己的 Keras 到 ONNX 文件轉(zhuǎn)換器。有時, TensorFlow -to-ONNX 不支持某些層,但 Keras-to-ONNX 轉(zhuǎn)換器支持這些層。根據(jù) Keras 框架和使用的層類型,您可能需要在轉(zhuǎn)換器之間進(jìn)行選擇。

在下面的代碼示例中,使用 Keras-to-ONNX 轉(zhuǎn)換器將 Keras 模型直接轉(zhuǎn)換為 ONNX 。下載預(yù)先訓(xùn)練的語義分段文件 semantic_segmentation.hdf5 。

pYYBAGJGrxuAAvmEAAAd4F0DPHw247.png

圖 3 顯示了網(wǎng)絡(luò)的體系結(jié)構(gòu)。

poYBAGJGrY2AE4CrAABfgyFbT7k214.png

圖 3 ?;?VGG16 的語義分割模型。

與前面的示例一樣,使用下面的代碼示例創(chuàng)建語義分段引擎。

pYYBAGJGryaARbkjAAAq9e7lxJY387.png

要測試模型的輸出,請使用 城市景觀數(shù)據(jù)集 。要使用城市景觀,必須具有以下功能: sub_mean_chw 和 color_map 。這些函數(shù)也用于 post , 基于 TensorRT 3 的自主車輛快速 INT8 推理 。

在下面的代碼示例中, sub_mean_chw 用于從圖像中減去平均值作為預(yù)處理步驟, color_map 是從類 ID 到顏色的映射。后者用于可視化。

pYYBAGJGrzqAQX-AAAA3KOHqUOg723.png

poYBAGJGr0OABoXYAAAbHaod2Dw526.png

下面的代碼示例是上一個示例的其余代碼。必須先運行上一個塊,因為需要定義的函數(shù)。使用這個例子比較 Keras 模型和 TensorRT 引擎 semantic 。 plan 文件的輸出,然后可視化這兩個輸出。根據(jù)需要替換占位符 /path/to/semantic_segmentation.hdf5 和 input_file_path 。

poYBAGJGr16AQnJHAABCiJPN_VU162.png

poYBAGJGr2WAZGszAAAPXrDEFdc349.png

圖 4 顯示了實際圖像和實際情況,以及 Keras 的輸出與 TensorRT 引擎的輸出的對比。如您所見, TensorRT 發(fā)動機的輸出與 Keras 的類似。

pYYBAGJGrZSACUPPAAQTP3OFMbU453.png

圖 4a 原始圖像 。

poYBAGJGrZaAGb1ZAAB8Qxy0v4k876.png

圖 4b 地面真相標(biāo)簽

poYBAGJGrZeADUl3AABv5WMB6Sk459.png

圖 4c 。 TensorRT 的輸出。

pYYBAGJGrZyAZI-mAABv5WMB6Sk593.png

圖 4d : Keras 的輸出。

在其他網(wǎng)絡(luò)上試試

現(xiàn)在您可以在其他網(wǎng)絡(luò)上嘗試 ONNX 工作流。有關(guān)分段網(wǎng)絡(luò)的好例子的更多信息,請參閱 GitHub 上的 具有預(yù)訓(xùn)練主干的分割模型 。

作為一個例子,我們用一個 ONNX 網(wǎng)絡(luò)來說明如何使用。本例中的網(wǎng)絡(luò)是來自 segmentation_models 庫的 U-Net 。在這里,我們只加載模型,而沒有對其進(jìn)行訓(xùn)練。您可能需要在首選數(shù)據(jù)集上訓(xùn)練這些模型。

關(guān)于這些網(wǎng)絡(luò)的一個重要點是,當(dāng)您加載這些網(wǎng)絡(luò)時,它們的輸入層大小如下所示:( None , None , None , 3 )。要創(chuàng)建一個 TensorRT 引擎,您需要一個輸入大小已知的 ONNX 文件。在將此模型轉(zhuǎn)換為 ONNX 之前,請通過為其輸入指定大小來更改網(wǎng)絡(luò),然后將其轉(zhuǎn)換為 ONNX 格式。

例如,從這個庫( segmentation _ models )加載 U-Net 網(wǎng)絡(luò)并為其輸入指定大小( 244 、 244 、 3 )。在為推理創(chuàng)建了 TensorRT 引擎之后,做一個與語義分段類似的轉(zhuǎn)換。根據(jù)應(yīng)用程序和數(shù)據(jù)集的不同,可能需要使用不同的顏色映射。

poYBAGJGr3qARsYkAAAr2J6FKGE279.png

我們之前提到的另一種下載方式是從 vz6 下載。它有一個預(yù)先訓(xùn)練模型的檢查點列表。例如,您可以在 TensorFlow 中搜索 UNet ,然后轉(zhuǎn)到 Download 頁面以獲取最新的檢查點。

總結(jié)

在這篇文章中,我們解釋了如何使用 TensorFlow-to-ONNX-to-TensorRT 工作流來部署深度學(xué)習(xí)應(yīng)用程序,并給出了幾個示例。第一個例子是 ResNet-50 上的 ONNX- TensorRT ,第二個例子是在 Cityscapes 數(shù)據(jù)集上訓(xùn)練的基于 英偉達(dá)數(shù)據(jù)中心深度學(xué)習(xí)產(chǎn)品性能 的語義分割。

關(guān)于作者

Houman 是 NVIDIA 的高級深度學(xué)習(xí)軟件工程師。他一直致力于開發(fā)和生產(chǎn) NVIDIA 在自動駕駛車輛中的深度學(xué)習(xí)解決方案,提高 DNN 的推理速度、精度和功耗,并實施和試驗改進(jìn) NVIDIA 汽車 DNN 的新思想。他在渥太華大學(xué)獲得計算機科學(xué)博士學(xué)位,專注于機器學(xué)習(xí)

About Yu-Te Cheng

Yu-Te Cheng 是 NVIDIA 自主駕駛組高級深度學(xué)習(xí)軟件工程師,從事自駕領(lǐng)域的各種感知任務(wù)的神經(jīng)結(jié)構(gòu)搜索和 DNN 模型訓(xùn)練、壓縮和部署,包括目標(biāo)檢測、分割、路徑軌跡生成等。他于 2016 年獲得卡內(nèi)基梅隆大學(xué)機器人學(xué)碩士學(xué)位。

About Josh Park

Josh Park 是 NVIDIA 的汽車解決方案架構(gòu)師經(jīng)理。到目前為止,他一直在研究使用 DL 框架的深度學(xué)習(xí)解決方案,例如在 multi-GPUs /多節(jié)點服務(wù)器和嵌入式系統(tǒng)上的 TensorFlow 。此外,他一直在評估和改進(jìn)各種 GPUs + x86 _ 64 / aarch64 的訓(xùn)練和推理性能。他在韓國大學(xué)獲得理學(xué)學(xué)士和碩士學(xué)位,并在德克薩斯農(nóng)工大學(xué)獲得計算機科學(xué)博士學(xué)位

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 代碼
    +關(guān)注

    關(guān)注

    30

    文章

    4956

    瀏覽量

    73500
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5594

    瀏覽量

    124145
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    【團(tuán)購】獨家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實戰(zhàn)課(11大系列課程,共5000+分鐘)

    、GPU加速訓(xùn)練(可選) 雙軌教學(xué):傳統(tǒng)視覺算法+深度學(xué)習(xí)方案全覆蓋 輕量化部署:8.6M超輕OCR模型,適合嵌入式設(shè)備集成 無監(jiān)督學(xué)習(xí):無
    發(fā)表于 12-04 09:28

    【團(tuán)購】獨家全套珍藏!龍哥LabVIEW視覺深度學(xué)習(xí)實戰(zhàn)課程(11大系列課程,共5000+分鐘)

    、GPU加速訓(xùn)練(可選) 雙軌教學(xué):傳統(tǒng)視覺算法+深度學(xué)習(xí)方案全覆蓋 輕量化部署:8.6M超輕OCR模型,適合嵌入式設(shè)備集成 無監(jiān)督學(xué)習(xí):無
    發(fā)表于 12-03 13:50

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗

    本帖欲分享在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗。我們采用jupyter notebook作為開發(fā)IDE,以TensorFlow2為訓(xùn)練框架,目標(biāo)是
    發(fā)表于 10-22 07:03

    NVIDIA TensorRT LLM 1.0推理框架正式上線

    TensorRT LLM 作為 NVIDIA 為大規(guī)模 LLM 推理打造的推理框架,核心目標(biāo)是突破 NVIDIA 平臺上的推理性能瓶頸。為實現(xiàn)這一目標(biāo),其構(gòu)建了多維度的核心實現(xiàn)路徑:一
    的頭像 發(fā)表于 10-21 11:04 ?999次閱讀

    如何在機器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習(xí)的目標(biāo)檢測可定位已訓(xùn)練的目標(biāo)類別,并通過矩形框(邊界框)對其進(jìn)行標(biāo)識。 在討論人工智能(AI)或深度學(xué)習(xí)時,經(jīng)常會出現(xiàn)“
    的頭像 發(fā)表于 09-10 17:38 ?804次閱讀
    如何在機器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)<b class='flag-5'>網(wǎng)絡(luò)</b>

    基于米爾瑞芯微RK3576開發(fā)板部署運行TinyMaix:超輕量級推理框架

    本文將介紹基于米爾電子MYD-LR3576開發(fā)平臺部署超輕量級推理框架方案:TinyMaix 摘自優(yōu)秀創(chuàng)作者-短笛君 TinyMaix 是面向單片機的超輕量級的神經(jīng)網(wǎng)絡(luò)推理庫,即
    發(fā)表于 07-25 16:35

    如何在RK3576開發(fā)板上運行TinyMaix :超輕量級推理框架--基于米爾MYD-LR3576開發(fā)板

    本文將介紹基于米爾電子MYD-LR3576開發(fā)平臺部署超輕量級推理框架方案:TinyMaix摘自優(yōu)秀創(chuàng)作者-短笛君TinyMaix是面向單片機的超輕量級的神經(jīng)網(wǎng)絡(luò)推理庫,即TinyML
    的頭像 發(fā)表于 07-25 08:03 ?4117次閱讀
    如何在RK3576開發(fā)板上運行TinyMaix :超輕量級<b class='flag-5'>推理</b><b class='flag-5'>框架</b>--基于米爾MYD-LR3576開發(fā)板

    信而泰×DeepSeek:AI推理引擎驅(qū)動網(wǎng)絡(luò)智能診斷邁向 “自愈”時代

    模態(tài)的技術(shù)特性,DeepSeek正加速推動AI在金融、政務(wù)、科研及網(wǎng)絡(luò)智能化等關(guān)鍵領(lǐng)域的深度應(yīng)用。 信而泰:AI推理引擎賦能網(wǎng)絡(luò)智能診斷新范
    發(fā)表于 07-16 15:29

    大模型推理顯存和計算量估計方法研究

    ,如乘法、加法等; (2)根據(jù)各層計算操作的類型和復(fù)雜度,確定每層所需的計算量; (3)將各層計算量相加,得到模型總的計算量。 基于硬件加速的算力估計 隨著硬件加速技術(shù)的發(fā)展,許多深度學(xué)習(xí)
    發(fā)表于 07-03 19:43

    大模型時代的深度學(xué)習(xí)框架

    量是約為 25.63M,在ImageNet1K數(shù)據(jù)集上,使用單張消費類顯卡 RTX-4090只需大約35~40個小時 ,即可完成ResNet50模型的預(yù)訓(xùn)練。在 大模型時代 ,由于大模型參數(shù)規(guī)模龐大,無法跟CNN時代的小模型一樣在單張顯卡上完成訓(xùn)練,需要構(gòu)建多張AI
    的頭像 發(fā)表于 04-25 11:43 ?767次閱讀
    大模型時代的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>框架</b>

    百度飛槳框架3.0正式版發(fā)布

    大模型訓(xùn)練成本高?推理效率低?硬件適配難? 4月1日,百度發(fā)布 飛槳框架3.0正式版 !五大特性專為大模型設(shè)計。 作為大模型時代的Infra“基礎(chǔ)設(shè)施”,深度
    的頭像 發(fā)表于 04-02 19:03 ?1109次閱讀
    百度飛槳<b class='flag-5'>框架</b>3.0正式版發(fā)布

    壁仞科技支持DeepSeek-V3滿血版訓(xùn)練推理

    DeepSeek-V3滿血版在國產(chǎn)GPU平臺的高效全棧式訓(xùn)練推理,實現(xiàn)國產(chǎn)大模型與國產(chǎn)GPU的深度融合優(yōu)化,開啟國產(chǎn)算力新篇章。
    的頭像 發(fā)表于 03-04 14:01 ?2076次閱讀

    DeepSeek推出NSA機制,加速長上下文訓(xùn)練推理

    的特性,專為超快速的長上下文訓(xùn)練推理而設(shè)計。 NSA通過針對現(xiàn)代硬件的優(yōu)化設(shè)計,顯著加快了推理速度,并大幅度降低了預(yù)訓(xùn)練成本,同時保持了卓越的性能表現(xiàn)。這一機制在確保效率的同時,并未
    的頭像 發(fā)表于 02-19 14:01 ?1048次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?1605次閱讀

    昆侖芯率先完成Deepseek訓(xùn)練推理全版本適配

    本文是昆侖芯適配DeepSeek系列推文第一篇,將于近期分別推出在昆侖芯P800上進(jìn)行DeepSeek-V3/R1推理、訓(xùn)練深度文章,干貨滿滿、持續(xù)關(guān)注!
    的頭像 發(fā)表于 02-06 15:13 ?2373次閱讀
    昆侖芯率先完成Deepseek<b class='flag-5'>訓(xùn)練</b><b class='flag-5'>推理</b>全版本適配