chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何使用GPU編程優(yōu)化模型/代碼

星星科技指導(dǎo)員 ? 來(lái)源:NVIDIA ? 作者:NVIDIA ? 2022-04-10 11:32 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

雖然世界在不斷變化,但開(kāi)發(fā)人員仍在不斷推動(dòng)他們使用創(chuàng)新技術(shù)應(yīng)對(duì)挑戰(zhàn)。最近的臺(tái)灣計(jì)算云( TWCC ) GPU Hackathon 就是這樣一個(gè)例子,它是開(kāi)發(fā)者和工程師使用 GPU 推進(jìn) HPC 和 AI 項(xiàng)目的催化劑。

國(guó)家高性能計(jì)算中心 、 臺(tái)灣網(wǎng)絡(luò)服務(wù)公司 、 NVIDIA 和 OpenACC 、 12 個(gè)團(tuán)隊(duì)和 15 名 NVIDIA 導(dǎo)師之間的合作,使用了從人工智能驅(qū)動(dòng)的制造調(diào)度模型到快速洪水預(yù)測(cè)模型的各種方法來(lái)加速項(xiàng)目。

利用人工智能優(yōu)化生產(chǎn)效率

智能制造的關(guān)鍵領(lǐng)域之一是優(yōu)化和自動(dòng)化生產(chǎn)線流程。團(tuán)隊(duì) AI 調(diào)度員和 工業(yè)技術(shù)研究中心(工研院) 的 計(jì)算智能技術(shù)中心( CITC ) 成員來(lái)到 hackathon ,使用機(jī)器學(xué)習(xí)開(kāi)發(fā)他們的制造調(diào)度模型。

傳統(tǒng)的調(diào)度模型大多采用啟發(fā)式規(guī)則,能夠即時(shí)響應(yīng)動(dòng)態(tài)事件。然而,他們的短期方法通常不會(huì)帶來(lái)最佳解決方案,并且在處理變化的變量時(shí)被證明是不靈活的,這限制了他們的持續(xù)生存能力。

該團(tuán)隊(duì)的方法使用蒙特卡羅樹(shù)搜索( MCTS )方法,將經(jīng)典的樹(shù)搜索實(shí)現(xiàn)與強(qiáng)化學(xué)習(xí)的機(jī)器學(xué)習(xí)原理結(jié)合起來(lái)。該方法解決了現(xiàn)有的啟發(fā)式限制,提高了整體調(diào)度模型的效率,提高了效率。

通過(guò)與導(dǎo)師合作,團(tuán)隊(duì) AI Scheduler 學(xué)會(huì)了使用 NVIDIA Nsight 系統(tǒng) 來(lái)識(shí)別瓶頸,并使用 GPU 來(lái)并行化代碼。活動(dòng)結(jié)束時(shí),團(tuán)隊(duì)能夠加快 MCTS 算法模擬步驟。這將調(diào)度時(shí)間從 6 小時(shí)減少到 30 分鐘,并使總體調(diào)度效率提高了 11.3 倍。

工研院 CITC 的曾正蘇博士和黃浩哲博士說(shuō):“在本次黑客大會(huì)上證明了使用 GPU 加速我們的模型的可行性之后,下一步是將其應(yīng)用到我們的商業(yè)模型中,供工業(yè)使用。”。

使用 GPU 了解地球科學(xué)的全局

臺(tái)灣位于歐亞大陸和菲律賓海板塊之間,是世界上構(gòu)造最活躍的地區(qū)之一,也是全球地震研究的重要基地。地質(zhì)研究和構(gòu)造活動(dòng)的時(shí)間尺度通常以數(shù)千年或數(shù)萬(wàn)年為單位。這需要使用大量數(shù)據(jù)和足夠的計(jì)算能力來(lái)進(jìn)行有效分析。

由 中央研究院地球研究所 的譚博士領(lǐng)導(dǎo)的 IES 地球動(dòng)力學(xué)團(tuán)隊(duì)來(lái)到 GPU Hackathon 加速他們的數(shù)值地球動(dòng)力學(xué)模型。它名為 DynEarthSol ,模擬地幔對(duì)流、俯沖、造山和構(gòu)造。此前,該團(tuán)隊(duì)通過(guò)將數(shù)據(jù)分塊并限制計(jì)算過(guò)程以適應(yīng) CPU 有限的計(jì)算能力來(lái)減少計(jì)算和步驟的數(shù)量,從而處理大量數(shù)據(jù)。這使得很難看到研究的全貌。

pYYBAGJST-SAa2tjAASPieycVq8900.png

圖 2 俯沖帶的動(dòng)畫(huà)模擬。

在黑客競(jìng)賽的過(guò)程中,團(tuán)隊(duì)使用了一種新的數(shù)據(jù)輸入方法,利用 GPU 計(jì)算數(shù)據(jù)和多個(gè)步驟。使用 OpenACC , IES 地球動(dòng)力學(xué)團(tuán)隊(duì)能夠?qū)?80% 的模型移植到 GPU ,并實(shí)現(xiàn)了 13.6 倍的加速。

“這是我第二次參加 GPU 黑客競(jìng)賽,我肯定會(huì)參加下一次,”中央研究院國(guó)際研究所研究員譚恩恩教授說(shuō)?!拔覀円呀?jīng)學(xué)會(huì)了采用 GPU 的適當(dāng)方法,用戶友好的分析工具為我們提供了一個(gè)優(yōu)化模型的好主意?!?/p>

該團(tuán)隊(duì)將繼續(xù)致力于移植其模型的剩余 20% 。他們期待使用 GPU 運(yùn)行更多高分辨率模型,以更深入地了解臺(tái)灣的編隊(duì)活動(dòng)。

用于應(yīng)急規(guī)劃和響應(yīng)的快速洪水評(píng)估

洪水是最具破壞性的自然災(zāi)害之一。每年造成大量人員傷亡和經(jīng)濟(jì)損失, 全世界平均有 2100 萬(wàn)人受洪水影響 ,由于氣候變化和其他因素,預(yù)計(jì)人數(shù)還會(huì)增加。預(yù)防和減輕這些危害是一項(xiàng)關(guān)鍵工作。

來(lái)自 國(guó)立楊橋大學(xué)( NYCU ) 的 THINKLAB 團(tuán)隊(duì)正在開(kāi)發(fā)一種模型,該模型可以為緊急情況提供快速準(zhǔn)確的結(jié)果,同時(shí)保持操作的簡(jiǎn)單性。所提出的 混合淹沒(méi)模型( HIM ) 通過(guò)元胞自動(dòng)機(jī)方法求解零慣性方程,并與亞網(wǎng)格級(jí)插值策略配合使用,以生成更高分辨率的結(jié)果。

Picture5.gif

圖 3 HIM 產(chǎn)生的洪水范圍示例。

使用 Python 和 NumPy 庫(kù)開(kāi)發(fā)的 HIM 模型在 hackathon 開(kāi)始時(shí)沒(méi)有并行或 GPU 計(jì)算。在活動(dòng)期間, THINKLAB 團(tuán)隊(duì)使用 CuPy 為了使他們的代碼在 GPU 上并行運(yùn)行,然后重點(diǎn)將用戶定義的 CUDA 內(nèi)核應(yīng)用于參數(shù)。結(jié)果是 672 倍加速,計(jì)算時(shí)間從 2 周縮短到大約 30 分鐘。

THINKLAB 團(tuán)隊(duì)成員 Obaja Wijaya 說(shuō):“我們?cè)谶@次活動(dòng)中學(xué)到了很多技巧,并向其他人強(qiáng)烈推薦這些活動(dòng)。”?!癗VIDIA 是這一領(lǐng)域的專家,通過(guò)與他們的導(dǎo)師合作,我們學(xué)會(huì)了如何使用 GPU 編程優(yōu)化模型/代碼?!?/p>

關(guān)于作者

Izumi Barker 是 NVIDIA GPU 黑客競(jìng)賽和訓(xùn)練營(yíng)的項(xiàng)目經(jīng)理,也是 OpenACC Standard 的公關(guān)總監(jiān)。組織。在這些角色之前,她在鳳凰城大學(xué)、 CeCon 集團(tuán)、囊性纖維化基金會(huì)和 LLP 安永等高等教育、生命科學(xué)、技術(shù)和出版行業(yè)的公司舉辦了戰(zhàn)略營(yíng)銷和傳播職位。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4946

    瀏覽量

    131235
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4827

    瀏覽量

    86741
  • CUDA
    +關(guān)注

    關(guān)注

    0

    文章

    122

    瀏覽量

    14125
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    探索AIGC未來(lái):CPU源碼優(yōu)化、多GPU編程與中國(guó)算力瓶頸與發(fā)展

    近年來(lái),AIGC的技術(shù)取得了長(zhǎng)足的進(jìn)步,其中最為重要的技術(shù)之一是基于源代碼的CPU調(diào)優(yōu),可以有效地提高人工智能模型的訓(xùn)練速度和效率,從而加快了人工智能的應(yīng)用進(jìn)程。同時(shí),多GPU編程技術(shù)
    的頭像 發(fā)表于 12-08 11:49 ?2134次閱讀
    探索AIGC未來(lái):CPU源碼<b class='flag-5'>優(yōu)化</b>、多<b class='flag-5'>GPU</b><b class='flag-5'>編程</b>與中國(guó)算力瓶頸與發(fā)展

    無(wú)法在GPU上運(yùn)行ONNX模型的Benchmark_app怎么解決?

    在 CPU 和 GPU 上運(yùn)行OpenVINO? 2023.0 Benchmark_app推斷的 ONNX 模型。 在 CPU 上推理成功,但在 GPU 上失敗。
    發(fā)表于 03-06 08:02

    優(yōu)化模型與Lindo/Lingo優(yōu)化軟件

    優(yōu)化模型與Lindo/Lingo優(yōu)化軟件 優(yōu)化模型簡(jiǎn)介 LINDO公司的主要軟件產(chǎn)品及功能簡(jiǎn)介 LINDO軟件
    發(fā)表于 09-15 12:22

    【招聘】算法、圖像檢索、嵌入式、測(cè)試、架構(gòu)、GPU優(yōu)化等職位(bj&sh)

    。 2、熟悉NVIDIA或AMD GPU體系結(jié)構(gòu)和代碼優(yōu)化技術(shù)。 3、熟練使用CUDA或者OpenCL編程。 芯片驗(yàn)證工程師 Responsibilities: - Develop
    發(fā)表于 02-28 14:23

    GPU編程的平臺(tái)模型、執(zhí)行模型、內(nèi)存模型編程模型

    GPU編程--OpenCL四大模型
    發(fā)表于 04-29 07:40

    請(qǐng)問(wèn)Mali GPU的并行化計(jì)算模型是怎樣構(gòu)建的?

    Mali T604 GPU的結(jié)構(gòu)是由哪些部分組成的?Mali T604 GPU編程特性有哪些?Mali GPU的并行化計(jì)算模型是怎樣構(gòu)建的
    發(fā)表于 04-19 08:06

    在Ubuntu上使用Nvidia GPU訓(xùn)練模型

    問(wèn)題最近在Ubuntu上使用Nvidia GPU訓(xùn)練模型的時(shí)候,沒(méi)有問(wèn)題,過(guò)一會(huì)再訓(xùn)練出現(xiàn)非常卡頓,使用nvidia-smi查看發(fā)現(xiàn),顯示GPU的風(fēng)扇和電源報(bào)錯(cuò):解決方案自動(dòng)風(fēng)扇控制在nvidia
    發(fā)表于 01-03 08:24

    Mali GPU支持tensorflow或者caffe等深度學(xué)習(xí)模型

    好的Tensorflow或者Caffe模型部署到ARM平臺(tái)Mali-G71/72 GPU上運(yùn)行,而不重新OpenCL編寫(xiě)代碼,但沒(méi)有看見(jiàn)相關(guān)可行的資料。網(wǎng)上信息顯示tensorflow lit和caffe2Go可以部署到ARM,
    發(fā)表于 09-16 14:13

    Mali-Valhall系列GPU編程內(nèi)核

    2018年起。當(dāng)使用GPU優(yōu)化應(yīng)用程序時(shí),至少有一個(gè)高級(jí)心理模型是有用的了解底層硬件的工作方式。了解預(yù)期性能也很有用以及它可能執(zhí)行的不同類型操作的數(shù)據(jù)速率。在優(yōu)化使用Mali時(shí),了解塊
    發(fā)表于 08-02 16:38

    Keil C編譯器編程規(guī)則和代碼優(yōu)化

    本內(nèi)容介紹了Keil C編譯器編程規(guī)則和代碼優(yōu)化,要實(shí)用好單片機(jī)就必須清楚它的內(nèi)部結(jié)構(gòu)組織結(jié)構(gòu),無(wú)論是在芯片的選擇還是代碼的編寫(xiě)
    發(fā)表于 04-20 17:37 ?315次下載
    Keil C編譯器<b class='flag-5'>編程</b>規(guī)則和<b class='flag-5'>代碼</b><b class='flag-5'>優(yōu)化</b>

    數(shù)據(jù)流編程模型優(yōu)化

    提出了新的挑戰(zhàn)。針對(duì)數(shù)據(jù)流程序在分布式架構(gòu)下所面臨的問(wèn)題,設(shè)計(jì)并實(shí)現(xiàn)了數(shù)據(jù)流編程模型和分布式計(jì)算框架的結(jié)合在COStream的基礎(chǔ)上提出了面向Storm的編譯優(yōu)化框架??蚣馨▋蓚€(gè)模塊:面向Storm的層次性任務(wù)劃分與調(diào)度,以及
    發(fā)表于 11-23 15:48 ?3次下載
    數(shù)據(jù)流<b class='flag-5'>編程</b><b class='flag-5'>模型</b><b class='flag-5'>優(yōu)化</b>

    CUDA簡(jiǎn)介: CUDA編程模型概述

    在 CUDA 編程模型中,線程是進(jìn)行計(jì)算或內(nèi)存操作的最低抽象級(jí)別。 從基于 NVIDIA Ampere GPU 架構(gòu)的設(shè)備開(kāi)始,CUDA 編程模型
    的頭像 發(fā)表于 04-20 17:16 ?3369次閱讀
    CUDA簡(jiǎn)介: CUDA<b class='flag-5'>編程</b><b class='flag-5'>模型</b>概述

    使用NVIDIA數(shù)學(xué)庫(kù)加速GPU應(yīng)用程序

      加速 GPU 應(yīng)用程序的主要方法有三種:編譯器指令、編程語(yǔ)言和預(yù)編程庫(kù)。編譯器指令,例如 OpenACC a 允許您順利地將代碼移植到 GPU
    的頭像 發(fā)表于 10-10 15:11 ?7987次閱讀
    使用NVIDIA數(shù)學(xué)庫(kù)加速<b class='flag-5'>GPU</b>應(yīng)用程序

    谷歌發(fā)布用于輔助編程代碼模型CodeGemma

    谷歌發(fā)布了用于輔助編程代碼模型 CodeGemma。CodeGemma 基于谷歌今年 2 月發(fā)布的輕量級(jí)開(kāi)源大模型 Gemma,針對(duì) Gemma 的兩個(gè)不同參數(shù)規(guī)模的版本 Gemm
    的頭像 發(fā)表于 04-17 16:07 ?1085次閱讀
    谷歌發(fā)布用于輔助<b class='flag-5'>編程</b>的<b class='flag-5'>代碼</b>大<b class='flag-5'>模型</b>CodeGemma

    Triton編譯器與GPU編程的結(jié)合應(yīng)用

    優(yōu)化,以及生成高效的并行執(zhí)行計(jì)劃。 GPU編程的挑戰(zhàn) GPU編程面臨的主要挑戰(zhàn)包括: 編程復(fù)雜性
    的頭像 發(fā)表于 12-25 09:13 ?836次閱讀