chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA T4 GPU和TensorRT加速微信搜索速度

星星科技指導員 ? 來源:NVIDIA ? 作者:NVIDIA ? 2022-04-21 10:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

案例簡介

騰訊公司利用NVIDIA TensorRT推理引擎的INT8推理能力和基于知識蒸餾的QAT訓練,大大加速了微信中的搜索動能,節(jié)省了約70%的計算資源。本案例主要應用到NVIDIA T4 GPU和TensorRT。

客戶簡介及應用背景

隨著騰訊微信的發(fā)展,微信搜索也成為其越來越重要的功能,這個功能可以用來搜索微信內(nèi)部的賬號、信息,以及搜索互聯(lián)網(wǎng)上的內(nèi)容。微信搜索月活躍用戶數(shù)量達到五億以上。搜索業(yè)務當中使用了大量的神經(jīng)網(wǎng)絡(luò)模型,包括自然語言理解、匹配排序等等,這些模型的訓練和推理都大量依賴于NVIDIA GPU,尤其在推理方面,NVIDIA GPU及相應的解決方案都滿足了業(yè)務所需的延遲和吞吐要求。

客戶挑戰(zhàn)

微信搜索業(yè)務由多個子模塊構(gòu)成,包括查詢理解、匹配、搜索排序等等。由于搜索的業(yè)務特點,這些任務對線上服務的延遲和吞吐都十分敏感。然而在最近幾年,隨著算力的提升以及算法的創(chuàng)新,很多大型復雜的神經(jīng)網(wǎng)絡(luò)模型開始應用在這些任務上,比如BERT/Transformer等模型。

這些大模型需要的計算資源和業(yè)務上的高要求對推理端的軟硬件都是很大的挑戰(zhàn),必須針對具體的硬件做極致的優(yōu)化。而且對于大模型的推理,很多技術(shù)被探索、應用在這些場景上以便實現(xiàn)性能加速、節(jié)約資源,比如模型壓縮、剪枝、低精度計算等。這些技術(shù)可能會帶來精度下降等負面影響,限制了這些技術(shù)的廣泛應用。因此,如何在保證精度效果以及服務吞吐延遲需求的情況下,高效地對這些模型進行推理成為了業(yè)務上的巨大挑戰(zhàn)。NVIDIA GPU以及NVIDIA TensorRT給這一場景提供了解決方案。

應用方案

為了滿足線上服務的需求,并且盡可能地節(jié)約成本,微信搜索選擇使用NVIDIA T4 GPU以及TensorRT推理引擎來進行線上大模型的推理。

線上服務對于吞吐和延遲有很高的要求,微信搜索選擇使用NVIDIA T4 GPU以及TensorRT推理引擎來做線上推理服務,利用NVIDIA基于TensorRT開源的BERT實現(xiàn),可以很方便地在FP16精度下實現(xiàn)滿足需求的線上推理功能。這個方案在線上取得了很好的效果。

在此基礎(chǔ)上,微信搜索希望進一步加快推理速度,節(jié)約計算資源,以便更好地服務用戶,節(jié)約成本。低精度推理成為了很好的選擇。NVIDIA GPU從圖靈(Turing)架構(gòu)開始就有了INT8 Tensor Core,其計算吞吐量最高可達FP16精度的2倍。同時低精度推理跟其他的優(yōu)化方法也是正交的,可以同時使用其他技術(shù)比如剪枝、蒸餾等做進一步提升。微信搜索線上大量使用NVIDIA T4 GPU,非常適合使用INT8推理。而且TensorRT對INT8推理也有良好的支持。利用TensorRT的“校準”(Calibration)功能,能夠方便地將Float精度模型轉(zhuǎn)換為INT8低精度模型,實現(xiàn)低精度推理。通過低精度推理,模型的單次推理時間大大縮短。

通過“校準”來做模型轉(zhuǎn)換已經(jīng)在很多計算機視覺模型上被驗證是十分有效的,并且其精度和推理性能都十分優(yōu)秀。然而對于像BERT一類的模型, “校準” 無法使得精度和性能都完全令人滿意。因此,騰訊搜索使用了NVIDIA開發(fā)的基于PyTorch/TensorFlow的量化工具進行基于知識蒸餾的量化感知訓練(Quantization Aware Training)克服精度下降的問題。TensorRT對于導入量化感知訓練好的模型進行INT8低精度推理有著很好的支持。導入這樣的模型,不僅得到了最佳性能,而且精度沒有損失,線上服務只需更換TensorRT構(gòu)建好的引擎即可,極大地簡化了部署的流程。

通過這樣的方案,微信搜索中的一些關(guān)鍵任務,比如查詢理解等自然語言理解任務,可以在精度沒有損失的情況下,達到2-10倍的加速效果,平均單句推理時間達到了0.1ms。任務相應的計算資源節(jié)省了約70%。這個方案大大優(yōu)化了微信搜索業(yè)務的性能,降低了部署成本。

使用效果及影響

使用NVIDIA T4 GPU以及TensorRT推理引擎進行INT8低精度推理,極大提升了微信搜索的速度,進一步提升了用戶體驗,節(jié)約了公司成本。

微信搜索的Hui Liu、Raccoon Liu和Dick Zhu表示:”我們已經(jīng)實現(xiàn)了基于TensorRT和INT8 QAT的模型推理加速,以加速微信搜索的核心任務,包括Query理解和查詢結(jié)果排序等。我們用GPU+TensorRT的解決方案突破了NLP模型復雜性的限制,BERT/Transformer可以完全集成到我們的解決方案中。此外,我們利用卓越的性能優(yōu)化方法,節(jié)省了70%的計算資源?!?/p>

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5496

    瀏覽量

    109109
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    5100

    瀏覽量

    134473
  • 計算機
    +關(guān)注

    關(guān)注

    19

    文章

    7764

    瀏覽量

    92690
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    NVIDIA RTX PRO 2000 Blackwell GPU性能測試

    越來越多的應用正在使用 AI 加速,而無論工作站的大小或形態(tài)如何,都有越來越多的用戶需要 AI 性能。NVIDIA RTX PRO 2000 Blackwell 是全新 NVIDIA
    的頭像 發(fā)表于 11-28 09:39 ?3743次閱讀
    <b class='flag-5'>NVIDIA</b> RTX PRO 2000 Blackwell <b class='flag-5'>GPU</b>性能測試

    NVIDIA TensorRT LLM 1.0推理框架正式上線

    TensorRT LLM 作為 NVIDIA 為大規(guī)模 LLM 推理打造的推理框架,核心目標是突破 NVIDIA 平臺上的推理性能瓶頸。為實現(xiàn)這一目標,其構(gòu)建了多維度的核心實現(xiàn)路徑:一方面,針對需
    的頭像 發(fā)表于 10-21 11:04 ?769次閱讀

    DeepSeek R1 MTP在TensorRT-LLM中的實現(xiàn)與優(yōu)化

    TensorRT-LLM 在 NVIDIA Blackwell GPU 上創(chuàng)下了 DeepSeek-R1 推理性能的世界紀錄,Multi-Token Prediction (MTP) 實現(xiàn)了大幅提速
    的頭像 發(fā)表于 08-30 15:47 ?3970次閱讀
    DeepSeek R1 MTP在<b class='flag-5'>TensorRT</b>-LLM中的實現(xiàn)與優(yōu)化

    NVIDIA桌面GPU系列擴展新產(chǎn)品

    NVIDIA 桌面 GPU 系列擴展,推出 NVIDIA RTX PRO 4000 SFF Edition GPU 和 RTX PRO 2000 Blackwell
    的頭像 發(fā)表于 08-18 11:50 ?998次閱讀

    NVIDIA RTX AI加速FLUX.1 Kontext現(xiàn)已開放下載

    NVIDIA RTX 與 NVIDIA TensorRT 現(xiàn)已加速 Black Forest Labs 的最新圖像生成和編輯模型;此外,Gemma 3n 現(xiàn)可借助 RTX 和
    的頭像 發(fā)表于 07-16 09:16 ?1865次閱讀

    如何在魔搭社區(qū)使用TensorRT-LLM加速優(yōu)化Qwen3系列模型推理部署

    TensorRT-LLM 作為 NVIDIA 專為 LLM 推理部署加速優(yōu)化的開源庫,可幫助開發(fā)者快速利用最新 LLM 完成應用原型驗證與產(chǎn)品部署。
    的頭像 發(fā)表于 07-04 14:38 ?1760次閱讀

    NVIDIA Blackwell GPU優(yōu)化DeepSeek-R1性能 打破DeepSeek-R1在最小延遲場景中的性能紀錄

    本文將探討 NVIDIA TensorRT-LLM 如何基于 8 個 NVIDIA Blackwell GPU 的配置,打破 DeepSeek-R1 在最小延遲場景中的性能紀錄:在 G
    的頭像 發(fā)表于 07-02 19:31 ?2941次閱讀
    <b class='flag-5'>NVIDIA</b> Blackwell <b class='flag-5'>GPU</b>優(yōu)化DeepSeek-R1性能 打破DeepSeek-R1在最小延遲場景中的性能紀錄

    使用NVIDIA Triton和TensorRT-LLM部署TTS應用的最佳實踐

    針對基于 Diffusion 和 LLM 類別的 TTS 模型,NVIDIA Triton 和 TensorRT-LLM 方案能顯著提升推理速度。在單張 NVIDIA Ada Love
    的頭像 發(fā)表于 06-12 15:37 ?1306次閱讀
    使用<b class='flag-5'>NVIDIA</b> Triton和<b class='flag-5'>TensorRT</b>-LLM部署TTS應用的最佳實踐

    使用NVIDIA RTX PRO Blackwell系列GPU加速AI開發(fā)

    NVIDIA GTC 推出新一代專業(yè)級 GPU 和 AI 賦能的開發(fā)者工具—同時,ChatRTX 更新現(xiàn)已支持 NVIDIA NIM,RTX Remix 正式結(jié)束測試階段,本月的 NVIDIA
    的頭像 發(fā)表于 03-28 09:59 ?1080次閱讀

    使用NVIDIA CUDA-X庫加速科學和工程發(fā)展

    NVIDIA GTC 全球 AI 大會上宣布,開發(fā)者現(xiàn)在可以通過 CUDA-X 與新一代超級芯片架構(gòu)的協(xié)同,實現(xiàn) CPU 和 GPU 資源間深度自動化整合與調(diào)度,相較于傳統(tǒng)加速計算架構(gòu),該技術(shù)可使計算工程工具運行
    的頭像 發(fā)表于 03-25 15:11 ?1212次閱讀

    NVIDIA技術(shù)助力Pantheon Lab數(shù)字人實時交互解決方案

    本案例中,Pantheon Lab(萬想科技)專注于數(shù)字人技術(shù)解決方案,通過 NVIDIA 技術(shù)實現(xiàn)數(shù)字人實時對話與客戶互動交流。借助 NVIDIA GPU、NVIDIA
    的頭像 發(fā)表于 01-14 11:19 ?929次閱讀

    借助NVIDIA GPU提升魯班系統(tǒng)CAE軟件計算效率

    本案例中魯班系統(tǒng)高性能 CAE 軟件利用 NVIDIA 高性能 GPU,實現(xiàn)復雜產(chǎn)品的快速仿真,加速產(chǎn)品開發(fā)和設(shè)計迭代,縮短開發(fā)周期,提升產(chǎn)品競爭力。
    的頭像 發(fā)表于 12-27 16:24 ?1157次閱讀

    NVIDIA TensorRT-LLM中啟用ReDrafter的一些變化

    Recurrent Drafting (簡稱 ReDrafter) 是蘋果公司為大語言模型 (LLM) 推理開發(fā)并開源的一種新型推測解碼技術(shù),該技術(shù)現(xiàn)在可與 NVIDIA TensorRT-LLM 一起使用。
    的頭像 發(fā)表于 12-25 17:31 ?1242次閱讀
    在<b class='flag-5'>NVIDIA</b> <b class='flag-5'>TensorRT</b>-LLM中啟用ReDrafter的一些變化

    解鎖NVIDIA TensorRT-LLM的卓越性能

    Batching、Paged KV Caching、量化技術(shù) (FP8、INT4 AWQ、INT8 SmoothQuant 等) 以及更多功能,確保您的 NVIDIA GPU 能發(fā)揮出卓越的推理性能。
    的頭像 發(fā)表于 12-17 17:47 ?1612次閱讀

    《CST Studio Suite 2024 GPU加速計算指南》

    許可證模型的加速令牌或SIMULIA統(tǒng)一許可證模型的SimUnit令牌或積分授權(quán)。 4. GPU計算的啟用 - 交互式模擬:通過加速對話框啟用,打開求解器對話框,點擊“
    發(fā)表于 12-16 14:25